J.M. O'Reilly & Associates, Inc. Professional Engineering, Land Surveying & Environmental Services Site Development • Property Line • Subdivision • Sanitary • Land Court • Environmental Permitting January 13, 2021 JMO# 8446A Barbara Huggins Carboni, Interim Town Planner Town of Truro Zoning Board of Appeals 24 Town Hall Road Truro, MA 02666 RE: Cloverleaf Development – Highland Road, Truro Additional Information for the BioMicrobics Treatment Process Dear Board Members, As requested during your last meeting, J.M. O'REILLY & ASSOCIATES, INC. has enclosed a summary package for the proposed BioMicrobics treatment process. The package includes a cover letter from the distributor J&R Sales along with the treatment results of three pilot systems within Massachusetts and an additional three systems within Rhode Island. The six systems are utilizing the same treatment component, BioBarrier System, as currently proposed at the Cloverleaf project. The treatment results for 5 of the 6 systems all show the treatment process is achieving the permit requirements of the specific system. The sixth system is the Cumberland Farms in Eastham which is meeting permit requirements a majority of the time. As discussed with the distributor, the issue at the Cumberland Farms site is that actual wastewater concentration is significantly higher that the original design parameters of the system. With that said, out of the 35 tests, only 9 were above 19 mg/L TN. And only 6 tests were above the typical state guidelines for TN effluent of 25 mg/L. Note: The Cumberland Farms system was designed to treat to 19 ppm. The design parameters for wastewater treatment are critical to the success of the treatment process. Facilities like a Cumberland Farms have different wastewater characteristics than residential flows. As design engineers it is important to understand the wastewater characteristics when choosing a treatment process. As part of our design process, our evaluation included the review of the success BioMicrobics has had at the residential facility in Westport. The attached test results from the Westport facility show that since startup the treatment process has had an average Total Nitrogen, at discharge, of <u>4.56 ppm</u>. Of the 18 tests, since start up, only 4 tests exceeded the 5 ppm treatment levels with no levels exceeding 10 ppm. Also, as a follow up to our last meeting we have also enclosed a document <u>"APPENDIX 5 – BioMicrobics BioBarrier Submission; Westport Noquochoke Village, Westport, MA"</u>. The document outlines operational data about Membrane Bioreactor (MBR) treatment process and the ability to reduce nitrogen. We would like the Board to specifically review the last page of the document. The last page outlines the treatment effectiveness in nitrogen reduction when a MBR is used in conjunction with "MicroC & MicroC G". MicroC & MicroC G are carbon source additives which are utilized in the treatment of wastewater. The additives provide the necessary "food" for the treatment process and when coupled with the MBR, results in very effective nitrogen reduction. Additives are very typical in any treatment process and are commonly used. It would be our recommendation to the operator and the owner to use this specific type of carbon source additive. As highlighted on the last page, there are six (6) residential housing sites which show very good nitrogen reductions. The average sewage flow is 10,600 GPD with an average of Total Nitrogen at discharge of 4.33 ppm. The highest nitrogen level of the six systems was found to be 5.7 with 2.9 ppm the lowest. The last page also includes a total of 23 MBR systems within the study. The 23 systems serve a variety of facilities besides the previously mentioned residential housing complexes. All twenty three systems show very good levels of Total Nitrogen upon discharge. As outlined during our last two meetings, J.M. O'REILLY & ASSOCIATES, INC. chose BioMicrobics MBR for the Cloverleaf project given the success rate of the membrane bioreactor treatment process. The BioMicrobics treatment process has the ability to be adjusted and modified by the certified operator as a result of actual wastewater flow and characteristics. The flexibility the operator has for system adjustments is further enhanced with the two treatment trains proposed. The two treatment trains will allow the operator to isolate the wastewater to one or both trains depending on wastewater strength (high BOD, TSS, Ph, Nitrogen) and flow (GPD). If the wastewater flow is significantly lower than the design flow, the operator can utilize only one treatment train so as to maximize the treatment results. In closing, J.M. O'REILLY & ASSOCIATES, INC's confidence in the ability of the process to meet the design parameters and our experience with the local distributor were the basis for our choice of the BioMicrobics Product. If you have any questions please feel free to contact me directly. Very truly yours, J.M. O'REILLY & ASSOCIATES, INC. John M. O'Reilly, P.E., P.L.S. Principal CC: T. Malone January 11, 2021 Mr. John M. O'Reilly, P.E. P.L.S. J.M. O'Reilly & Associates, Inc. PO Box 1173 Brewster, MA 02631 J&R SALES & SERVICE, INC. RE: Clover Leaf Drive - Truro, MA Dear John, Enclosed please find the information requested on the BioMicrobics BioBarrier® Membrane Treatment System proposed for use at the Clover Leaf Project in Truro, MA. We are pleased to offer this technology solution for your project. As requested, we have compiled data to support the use of the BioBarrier® System for this application. Enclosed please find a list of HSMBR BioBarrier® systems installed under the Massachusetts Department of Environmental Protection Piloting Approval. Further operational commercial data is also provided for systems installed in Rhode Island. A Membrane Bioreactor or MBR is a Wastewater Treatment Technology that combines a membrane filtration process, such as micro-filtration or ultra-filtration, within a suspended growth bioreactor. MBR Technology is a non-proprietary process that has been embraced by the Wastewater Treatment Industry and has developed into one of the predominant treatment options when nutrient removal is required. The BioMicrobics BioBarrier® system utilizes this technology and applies it for onsite applications. Each system installed uses the same pre-engineered, modular membrane cassettes. The number of cassettes used is dictated by the applications requirements. However, each system installed has the same treatment technology. So, an HSMBR 3.0 would have the same operation as a HSMBR 9.0 system. The variable in each application is the incoming wastewater. J&R has been fortunate to be involved in a variety of applications in the Piloting phase of the approval, and each system has shown the superior effluent quality the BioBarrier® can achieve. We feel this is an excellent representation of the diversity and success of the technology. We are confident that the BioMicrobics BioBarrier® proposed for the Clover Leaf Drive project is the best possible option for achieving the lowest TN limits. Please let us know if you have any questions or require additional information. Sincerely, Lauren D. Usilton President 44 Commercial St. Raynham, MA 02767 Tele. 508-823-9566 Fax 508-880-7232 # Commercial Systems installed in MA | Project Name | Address | City | Startup Date Model Installed | alled | |------------------------|---------------------------|--------------|--------------------------------|-----------| | Cumberland Farms, Inc. | 4460 Route 6A | Eastham | 1/25/2017 (1) BioBarrier 1.5-N | ier 1.5-N | | FedEx | 1 Beeman Road | Northborough | 10/11/2018 (1) HSMBR 9.0-DN | NO-0.6 | | Noquochoke Village | 1163 American Legion Hwy. | Westport | 5/7/2019 (2) HSMBR 6.0-N | N-0.9 | # Commercial Systems installed in RI | | The state of s | ALL PROPERTY OF THE O | | | |------------------------|--
--|--------------|------------------------------| | Project Name | Address | City | Startup Date | Startup Date Model Installed | | Matunuck Oyster Bar | 629 Succutash Road | South Kingston | 5/6/2016 | 5/6/2016 (1) HSMBR 6.0-DN | | AdCare, Inc. | 1950 Tower Hill Road | North Kingston | 8/23/2018 | 8/23/2018 (1) HSMBR 3.0-N | | Cumberland Farms, Inc. | 1812 East Main Road | Portsmouth | 10/18/2018 | 10/18/2018 (1) HSMBR 3.0-N | WEST DORT - NORWOCKHOLKE | | | | | | | | | | | | | 1 | | | | いないという | カカル | |---------------------------------|----------|-------------------|----------|-----------|---|---------|---|---------------------------------|----------|-------|------|------|---------|---------|-------|---------|------------| | | | | | | | | BioMic | BioMicrobics BioBarrier® | SioBa | rrier | @ I | | | | | , | | | | | | | | | Resid | Residential flows - design flow 9,990 gpd | ws - desi | ign flo | w 9, | 990g | pd | | | | | | | | | | | INFLUENT | ENT | | | | EFFLUENT | JENT | | | | | | | | | | | | | i | | | | | | 9 | | | | | i | | | | | BOD | | Н | TKN | Nitrate | Nitrite | Ammonia | Alkalinity | BOD | | Hd . | Z Y | Nitrate | Nitrite | Z | Ammonia | Alkalinity | | | mg/L T/Bm | mg/L | | June 2019 | 105 | 16.5 | 7.3 | 36.7 | DN | ND | 30.9 | 202 | <4.0 | | 7.6 | 3.05 | 9.40 | 0.34 | 12.79 | 1.45 | 183 | | July 2019 | 520 | 290 | 7 | 146.0 | ND | | 83.9 | 333 | <4.0 | <4.0 | 7.8 | 2.28 | 4.52 | QN | 08.9 | 0.25 | 94 | | August 2019 | 297 | 54 | 6.9 | 97.3 | DN | DN | 63.6 | 329 | <4.0 | <4.0 | 8.1 | 1.34 | 2.57 | QN | 3.91 | 0.1 | 229 | | September 2019 | 810 | 620 | 6.5 | 107.0 | DN | | 61.8 | 255 | <4.0 | <4.0 | 7.8 | 1.11 | 1.24 | QN | 2.35 | 0.17 | 150 | | October 2019 | 403 | 848 | 6.9 | 118.0 | ND | 0.45 | 63.7 | 286 | <4.0 | <4.0 | 7.9 | 0.79 | 1.11 | QN | 1.90 | 0.47 | 108 | | November 2019 | 408 | 140 | 6.5 | 90.4 | ND | ND | 9.69 | 337 | <4.0 | <4.0 | 7.8 | 92.0 | 0.92 | ND | 1.68 | 0.11 | 260 | | December 2019 | 146 | 70 | 6.8 | 75.0 | ND | ND | 47.40 | 284 | 4.4 | <4.0 | 7.7 | 1.62 | 3.81 | DN | 5.43 | 0.27 | 81 | | January 2020 | *No test | ing - men | nbrane c | leaning p | *No testing - membrane cleaning performed | | | | | | | | | | | | | | February 2020 | 31 | 88 | 6.9 | | 0.68 | ND | 15.60 | 167 | <4.0 | <4.0 | 7.4 | 2.26 | 1.23 | ND | 3.49 | DN | 81.4 | | March 2020 | 330 | 7 | 26 | 86.5 | ND | ND | 70.90 | 345 | <4.0 | <4.0 | 7.7 | 0.88 | 2.76 | QN | 3.64 | 0.31 | 80.6 | | April 2020 | COVID | COVID COVID | COVID | C | COVID | 00 | COVID | COVID | <4.0 | <4.0 | 7.4 | 1.56 | 7.27 | ON | 8.83 | 0.14 | 63.5 | | May 2020 | COVID | COVID COVID COVID | <4.0 | <4.0 | 7.5 | 1.13 | 2.77 | ND | 3.90 | QN | 63.7 | | June 2020 | COVID | COVID COVID COVID | <4.0 | <4.0 | 7.5 | 0.48 | 3.89 | DN | 4.37 | 0.14 | 59.9 | | July 2020 | COVID | COVID COVID | <4.0 | <4.0 | 7.4 | 0.72 | 4.59 | QN | 5.31 | DN | 62.6 | | August 2020 | COVID | COVID COVID COVID | <4.0 | <4.0 | 7.4 | ND | 3.41 | QN | 3.41 | 0.29 | 53.6 | | September 2020 | COVID | COVID COVID COVID | <4.0 | 8 | 7.4 | 1.31 | 2.42 | QN | 3.73 | DN | 50.7 | | October 2020 | COVID | covib covib covib | COVID | COVID | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.6 | 0.56 | 2.65 | ND | 3.21 | DN | 75.8 | | November 2020 | COVID | COVID COVID COVID | COVID | COVID | COVID | | COVID | COVID | <4.0 | <4.0 | 7.6 | 1.18 | 3.26 | DN | 4.44 | DN | 78.3 | | December 2020 | COVID | COVID COVID | <4.0 | 00 | 7.6 | 1.23 | 1.61 | QN | 2.84 | ND | 75.4 | | AVG | 338.9 | 270.4 | 12.31 | 87.4 | ND | ND | 56.4 | 282.00 | <4.0 | <4.0 | 7.62 | 1.31 | 3.30 | 0.34 | 4.56 | 0.34 | 103 | COVID=no influent samples taken | t sample | s taken | % TN | % TN Removal | % BOD | BOD Removal | % TSS Removal | loval | | | | | | | | | | | | | | 0 | 95% | 51 | %66 | %66 | FEO. EX | | | | BioMicr | BioMicrobics BioBarrier® | ırrier® | | | | |----------------------|-------------------------|-----------------|-------------|--------------------------|--|---------------|---------|---------| | | | War | ehouse Faci | lity - design (| Warehouse Facility - design flow 8,250 gpd | 7 | | | | | | INFLUENT | JENT | | | EFFLUENT | ENT | | | | BOD mg/L | TSS mg/L | pH mg/L | TKN mg/L | BOD mg/L | TSS mg/L | pH mg/L | TN mg/L | | Nov 18 | 150 | | | 96.1 | 10 | ND | 7.5 | 63.2** | | Dec 18 | * | * | * | * | * | | * | * | | Jan 19 | * | * | * | * | 28.4 | 6.5 | 7.5 | 52.10** | | Feb 19 | 111 | 49 | 7.1 | 84.7 | 30 | <4.0 | 6.9 | 27.01** | | March 19 | 171 | 37 | 7.4 | 95.3 | 9.82 | 8.5 | 7.1 | 13.65 | | April 19 | 205 | 58 | 7.2 | 94.8 | 6.9 | <4.0 | 6.9 | 7.76 | | May 19 | 190 | 20 | 7 | 95.1 | <4.0 | <4.0 | 7.7 | 2.96 | | June 19 | 144 | 41 | 7.1 | 105.0 | <4.0 | <4.0 | 7.6 | 9.16 | | July 19 | 72 | 48 | 7.3 | 112.0 | <4.0 | <4.0 | 7.3 | 10.77 | | Aug 19 | 57 | 18 | 7.2 | 152.0 | <4.0 | <4.0 | 7.3 | 9.84 | | Sept 19 | 120 | 45 | 7.2 | 135.0 | <4.0 | <4.0 | 7.5 | 10.93 | | Oct 19 | 31.6 | 21 | 7.7 | 158.0 | <4.0 | <4.0 | 8.9 | 18.36 | | Nov 19 | 116 | 16 | 7 | 108 | <4.0 | <4.0 | 6.9 | 35.8** | | Dec 19 | 648 | . 70 | 7 | 98 | 7.9 | <4.0 | 8.9 | 18.02 | | Jan 20 | 180 | 54 | 7 | 119 | <4.0 | 8 | 7.3 | 8.53 | | Feb 20 | 370 | 716 | 7 | 138 | <4.0 | 4.5 | 7.7 | 8.73 | | March 20 | 68 | 64 | 8 | 97 | <4.0 | <4.0 | 7.7 | 3.42 | | April 20 | 350 | 30 | 7 | 131 | <4.0 | <4.0 | 7.4 | 6.53 | | May 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.3 | 3.11 | | June 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.2 | 4.59 | | July 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.2 | 6.40 | | Aug 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.1 | 3.26 | | Sept 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.1 | 12.34 | | Oct 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.0 | 15.14 | | Nov 20 | 88 | 20 | 8 | 125 | <4.0 | <4.0 | 7.5 | 18.29 | | AVG | 181.94 | 83.79 | 7.32 | 113.7 | 7.14 | 4.55 | 7.26 | 9.59 | % Removal TN | % Removal TSS | % Removal BOD | | | | | | Average | | 95% | 83% | %96 | | | | * testing not perfor | * testing not performed | | | | | | | | | T neavy militarion | Caused Issues with the | earment process | | | | | | | ***filtration float issue | Part | | | | | | | | | | | | | | | | | |
--|------------|-----------|--------|-----------|--------|-------|---------|------------|---------|---------|-------|------|-------|------|-----|-----------------|---| | The color | | | | | S | nveni | ence St | ore/Ga | s Stat | | offee | Shop | | | | | | | No. 125 PH 100 Nittoria | | | | | INFLUE | ト | | | | | | | FFLUE | TN | | | | | 1.00 | | | | | | | Amr | Alkalinity | | | | | | | Amr | Alka | Unitally the control of | | 10 10 10 10 10 10 10 10 | Feb 2017 | 1 1 | | | | | | 121 | | | | | | | | | | | 10 10 10 10 10 10 10 10 | March 2017 | 1,400 | | | | | | | | | | 1.50 | | | | | WTS establishing system operation. It has been determined that the influent concentration of BOD, TSS and TKN exceeds the syst 31S design criteria. WTS is modifying system operations to content with this high influent organic strength. | | See 158 158, 2 No. No. 95, 25 421 12 420 6.5 6.5 6.5 6.5 6.5 6.5 116, 50 | pril 2017 | 430 | | | | | | | | | | B | | - | | | 93 System's operational modifications show improvement in nitrification. | | 1.00 | 1av 2017 | | | | | | | | | | | | | 1 | | | Flows 1,038 gpd. WTS found recycle line was compromised, which has effected the systems denitrification capacility. Recycle line 100 been repaired. | | 1,500 259 268 152,0 0.92 1.40 0.570 1.20 0.570
0.570 0.5 | ne 2017 | | | 1 | | | | | | | | | | | | | 210 Flows 1,113 gpd. Compliant sample. | | 1,120 4,100 5,10 4,100 1,120 24,00 1,120 24,00 | lv 2017 | | | | | | | | | 1 | | | | | | | 192 Flows 2,125 gpd. Compliant sample. | | 1,170 4,540 6, 6, 4,400 NO NO 1,170 1,100 4,00 4,00 1,20 | ug 2017 | | | | | | | | | | | | | | | | 258 Flows 3,010 gpd. Compilant sample. | | 1,500 6,0 6,0 8,0 9, | spt 2017 | | | 6.9 440.0 | | | | | | | 0 | | | | | | 124 Flows 2,989 gpd. Compliant sample. | | 1, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11 | ct 2017 | | | | | | | | | | | | | | | | 224 Flows 1,443 gpd, Compliant sample, | | 1,200 655 75 151.0 NO 0.05 0.0 | ov 2017 | | | | | | | | | | | | | | | | 211 Flows 948 gpd. Compliant sample. | | 1,100 116 11,100
11,100 11,10 | ec 2017 | | | | | | | | | 4 | | | | | No. | | 156 Flows 903 gpd. Compliant sample. | | 1,100 1,10 6,7 1,10,0 | n 2018 | | | | | | | | | | | | | | | | 138 Flows 868 gpd. Compliant sample. | | 1,10 6,6 156,0 | sb 2018 | | | | | | | | | 4 | | | | | | | 167 Flows 914 gpd. Compliant sample. | | 1,200 1,200 66 156.0 ND ND 135.00 | arch 2018 | | - | | | | | | | | | | | | | | Flows 934 gpd. No test, system in need of pumping. | | 450 117 6.8 157.0 ND ND 106.00 485 44 4 75 685 16.50 ND 23.53 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 | oril 2018 | - 1 | | 6.6 156.0 | | | | | | 4 | | | | | | | 182 Flows 959 gpd. Compliant Sample. System recently pumped. | | 1,100 6,4 1870 5,26 2,19 136.00 2359 4 7,4 2,45 13,10 0.0 24,15 0.35 0 | ay 2018 | 450 | | | | | | | | 4 | | | | | | | 63 Flows 1,719 gpd. System recently pumped, biological activity is reestablishing. | | 1,150 556 65 121.0 ND 121.0 666 425 425 425 4250 625 4250 426 425 4250 426 425 4250 426 425 4250 426 425 426 425 426 425 426 425 426 425 426 425 426 425 426 425 426 425 426 4 | ne 2018 | 7 | | | | | | | | 4 | | | | | | | Flows 3,073 gpd. Recycle pump in need of replacement. | | 1,150 980 1,151 1,150 0,150 1,151 1,18,00 4,64 4,54 2,45 1,179 3,13 1,175
1,175 | ly 2018 | | | | | | | | | | | | | | | | 237 Flows 3,518 gpd. Compliant sample. | | 467 712 712 612 113 66.90 465 440 45 73 117 934 113 054 054 054 054 772 220 61 1540 NO NO 11950 634 465 71 231 232 NO 2279 0.63 964 686 1,290 65 100 NO 100 100 135 71 431 1480 0.03 NO 1397 0.03 30 778 1,296 65 1450 NO NO 100 130 76 640 77 231 232 NO 132 0.03 934 0.03 934 0.03 940 960 | IE 2018 | | | | | | | | | | | | | | | | 96 Flows 3,719 gpd. | | 457 120 6.8 154.0 ND ND 119.00 494 440 45 71 249 20.30 ND 22.79 0.3 9.0 526 1,690 6.2 172.0 ND ND 105.00 5.30 11.9 14.9 | pt 2018 | | | | | | | | | | | | | | | | 63 Flows 3,100 gpd. Compliant Sample. | | Table Tabl | t 2018 | | | - | | | | | | | | | | | | | 30 Flows 1,929 gpd. | | 1,590 1,59 | ov 2018 | | | | | | | | | | | | | | | | 64 Flows 1,011 gpd. Compliant Sample. | | 1,120 1,120 1,120 1,10 | c 2018 | | | | | | | | | | | | | | | | Flows 927 gpd. No testing. System in need of pumping and membrane cleaning. | | 1,290 1,24 | 2019 | | | | | | | | | | | | | | | | 52 Flows 906 gpd. Compliant Sample. | | 511 112 6.4 154.0 ND 76.90 406 80.7 132 6.5 65.70 45.00 5.84 2.73 16.49 0.75 407 1.990 134 6.6 183.0 1.64 ND 7.6 40 80.7 13.2 6.5 65.70 46.00 5.4 116.15 30.4 5.7 1.990 134 6.6 138.0 ND ND 7.6 4.0 7.6 4.2 2.73 16.49 0.75 4.0 700 276 6.1 13.0 ND ND 7.3 7.1 4.4 7.2 2.08 0.4 6.7 4.0 1.20 2.7 1.20 2.7 4.0 7.6 4.2 2.2 1.0 ND 7.0 | 5 2019 | | | | | | | | | | | | | | | | | | 1,190 134 6.6 183.0 1.64 ND 76.90 406 80.7 15.2 6.5 65.70 45.00 5.45 116.15 30.4 407 1,990 134 6.6 183.0 1.64 ND 76.90 406 80.7 15.6 45.00 5.45 116.49 0.75 407 1,990 134 6.6 183.0 1.64 ND 73.60 386 7.1 44.0 7.6 4.22 2.08 0.42 6.72 10.40 1,910 1,220 6.2 138.0 ND ND 88.60 387 44.0 44.0 7.5 4.90 11.90 ND 1.31 1,900 446 6.4 115.0 ND ND 13.90 3.95 44.0 44.0 7.5 2.91 10.20 ND 13.11 1,900 440 6.1 165.0 ND ND 125.00 420 44.0 | arch 2019 | | - | | | | | | | | | | | | | | No testing. Recycle control panel not operational. | | 1,990 1384 6.6 183.0 1.64 ND | V 2019 | | | | | | | | | | | | | | | | 54 No flow measurement taken. Recycle pump falled. | | 100 276 6.3 110.0 ND ND 28.60 387 44.0
44.0 | e 2019 | | | 6.6 183.0 | | | | | | | | | | | | | 407 Flows 1,379 gpd. Compilant Sample. | | 2700 276 6.3 110.0 ND ND 73.60 386 7.1 44.0 7.6 4.22 2.08 0.42 6.77 ND 104 210 1.320 5.5 218.0 ND ND 65.80 387 44.0 44.0 7.5 4.22 2.08 0.42 6.77 ND 104 210 1.320 4.54 6.4 115.0 ND 1.33 95.20 44.2 44.0 4 | v 2019 | | 1 | | | | | | | | | | | | | | No testing. System in need of cleaning and pumping, waiting for authorization. | | 700 276 6.3 110.0 ND ND 73.60 386 7.1 44.0 7.6 4.22 2.08 0.42 6.77 ND 104 104 13.10 ND ND 73.60 387 7.1 44.0 7.6 4.22 2.08 0.42 6.77 ND 104 105 105 10.28 0.45 6.41 13.0 ND ND 65.80 339 44.0 44.0 7.2 13.0 ND 1.3.1 0.28 0.3 13.4 0.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1 | 2019 | | | | | | | | | | | | | | | | No testing. System in need of cleaning and pumping, waiting for authorization. | | 1300 276 6.3 110.0 ND ND 73.60 386 7.1 44.0 7.6 4.22 2.08 0.42 6.77 ND 14.04 250 426 6.4 115.0 ND ND 65.80 339 44.0 44.0 7.8 26.2 0.87 ND 15.80 ND 55.0 250 446 6.4 115.0 ND ND 0.20 376 44.0 44.0 7.8 26.2 0.87 ND 13.11 0.28 69 250 446 6.4 115.0 ND ND 113 95.50 44.2 44.0 7.8 2.62 0.87 ND 13.11 0.28 69 250 440 6.1 165.0 ND ND 12.00 ND 13.11 0.28 69 250 440 6.1 165.0 ND ND 12.00 A70 44.0 7.5 2.73 3.57 ND 6.30 0.14 100 250 440 6.1 186.0 ND ND 12.00 A70 44.0 44.0 7.8 2.85 0.01 ND 3.40 0.14 100 250 250 250 250 250 ND 2.90 2.90 2.90 2.90 250 250 250 250 250 250 ND 2.90 2.90 2.90 250 250 250 250 250 250 ND 2.90 2.90 2.90 250 250 250 250 250 250 ND 2.90 2.90 2.90 250 250 250 250 250 250 ND 2.90 2.90 2.90 250 250 250 250 250 250 250 ND 2.90 2.90 250 250 250 250 250 250 ND 2.90 2.90 2.90 250 250 250 250 250 250 250 ND 2.90 2.90 250 250 250 250 250 250 ND 2.90 2.90 250 | pt 2019 | | | | | | | | | | | | | | | | No testing. System in need of cleaning and pumping, waiting for authorization. | | 1310 1,520 2,58 110.0 ND ND ND ND ND ND ND N | t 2019 | | | | | | | | | | | | | | | THE PROPERTY OF | No testing. System in need of cleaning and pumping, waiting for authorization. | | 256 6.3 110.0 ND ND 73.60 386 7.1 64.0 7.6 4.22 2.08 0.42 6.77 ND 10.0 10 | v 2019 | | | | | | | | | | | | | | | | No testing. System in need of deaning and pumping, walting for authorization. | | 100 | c 2019 | | | | | | | | | | | | | | | | No testing. System in need of cleaning and pumping, waiting for authorization. | | Size 1,900 5.9 128.0 ND 88.60 387 64,0 64,0 71,2 4.90 11,90 ND 16.80 ND 5.50 1,310 1,320 6.1,132 ND ND 65,80 339 64,0 64,0 7.5 2.91 ND 13,11 ND 15,10 2,50 406 6.1 15.0 ND 1,13 95,50 42,2 64,0 64,0 7.5 2.73 3.57 ND 6.30 ND 13,11 ND 13,10 400 6.1 16.80 ND ND 129,00 470 64,0 64,0 81,13 3.55 ND 6.31 ND 13,10 ND 13,10 400 74 72 108,0 ND ND 125,00 424 64,0 81,13 82,50 82,50 82,50 ND 29,88 ND 6.32 ND 10,00 400 74 72 108,0 ND ND 125,00 424 64,0 64, | 2020 | | | | | | | | | | | | | | | | 104 Flows 1,064 gpd. Compliant Sample. System pumped, membranes cleaned and system reseeded earlier in the month. | | 1310 1320 6.2 138.0 ND 65.80 339 64.0 64.0 78 25.2 0.87 ND 3.49 0.5 90 250 464 6.2 115.0 ND 1131 90.20 375 64.0 64.0 75 273 327 ND 630 0.14 10.28 90 250 6.3 165.0 ND 1131 99.50 64.0 64.0 75 273 357 ND 630 0.14 10.28 90 250 6.8 158.0 ND ND 129.00 470 64.0 64.0 81 5.29 28.50 ND 83.79 1.07 5.18 250
250 | b 2020 | | | | | | | | | _ | | | | | | | 55 Flows 1,084 gpd. Compliant Sample. | | Sep 454 6.4 115.0 ND ND 90.20 376 <4.0 <4.0 7.5 291 10.20 ND 13.11 0.28 6.95 Sep 4.00 6.1 165.0 ND 1.13 95.50 4.42 <4.0 <4.0 7.5 2.73 3.57 ND 6.30 0.14 1.10 Sep 4.00 6.1 185.0 ND 0.34 138.0 4.20 <4.0 <4.0 4.4 2.25 6.01 ND 6.20 0.14 1.10 Sep 4.00 6.2 186.0 ND ND 129.00 4.70 <4.0 8.1 5.2 8.5 8.5 ND 6.23 0.07 1.00 4.00 7.4 7.2 108.0 ND ND 125.00 4.20 7.4 7 8.5 3.55 2.68 ND 6.23 0.67 1.00 4.00 7.4 7.2 108.0 ND ND 84.60 44.4 5.9 17.5 4.25 2.47 ND 6.97 0.38 7.5 5.00 5.00 5.00 ND ND 79.00 361 <4.0 4.20 7.5 2.52 2.47 ND 6.97 0.36 6.9 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 0.96 6.9 5.00 | arch 2020 | | | 6.2 138.0 | | | | | | - 1 | | | | | | | 90 Flows 959 gpd. Compliant Sample. | | SSO 400 6.1 165.0 ND 1.13 95.50 442 <44.0 74.0 75 2.73 3.57 ND 6.50 0.14 104 SSO 400 6.1 168.0 6.2 20.10 ND 0.34 128.00 587 <44.0 <44.0 74 2.25 6.01 ND 8.26 0.48 0.48 400 74 72 108.0 ND ND 129.00 470 44.0 44.0 44.0 8.3 3.55 2.68 ND 6.23 0.67 1000 400 74 72 108.0 ND ND 84.60 44.4 5.9 4.08 2.58 ND 2.98 0.34 1080 400 74 72 108.0 ND ND 84.60 44.4 5.9 4.08 2.58 ND 2.98 0.34 1080 400 520 130 6.4 10.16 1.2443 105.9 361 4.40 4.2 1.54 135.8 2.47 8.5 2.47 ND 5.09 0.96 400 6.2 6.3 6.4 | ril 2020 | | | | | | | | | | | | | | | | 69 Flows 890 gpd. Compilant Sample. | | S19 1,680 6.8 201.0 ND 0.94 138.00 S87 <4.0 44.0 2.25 6.01 ND 8.25 0.48 6.5 440 44 6.8 138.0 ND ND 129.00 470 44.0 44.0 8.1 5.29 8.50 ND 33.79 1.07 5.18 450 74 72 108.0 ND ND 25.00 492 7.4 7 8.5 3.55 2.66 ND 29.88 0.34 1.050 450 74 72 108.0 ND ND 84.60 464 6.7 44.0 8.5 2.80 ND 29.88 0.34 1.050 450 74 72 108.0 ND ND 81.50 44.1 5.9 4.5 4.5 2.5 0.0 0.0 450 828.1 6.48 16.16 1.76 1.244 105.9 74.0 12.203 1.73 7.5 4.5 2.47 ND 5.09 0.96 6.9 450 828.1 8.48 1.244 1.244 1.244 1.250 1.2203 1.223 1.235 7.6 9.42 11.64 13.58 24.17 5.21 2.00 460 828.1 8.48 1.244 | ay 2020 | | | | | | | | | | | | | | | | 104 Flows 979 gpd. Compliant Sample | | 490 44 6.8 188.0 ND ND 125.00 470 44.0 8.1 5.29 88.50 ND 33.79 1.07 518 1.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 | ne 2020 | | | | | | | | | - 3 | | | | | | | 65 Flows 1,456 gpd. Compliant sample. | | 910 896 6.9 186.0 ND ND 126.0D 492 7.4 7 8.5 3.55 2.68 ND 6.23 0.67 12000 400 74 72 108.0 ND ND 64.60 46.6 6.7 64.0 8.9 4.08 25.80 ND 29.88 0.34 12080 1.260 712 6 133.0 ND ND 79.0D 36.1 64.0 64.0 7.5 64.5 2.41 ND 5.09 0.38 7.5 520 180 6.5 102.0 ND 79.0D 36.1 64.0 64.0 7.5 26.2 2.47 ND 5.09 0.96 6.9 540 828.1 6.49 16.1,6 1.2443 10.5,9 782.0D 12.203 17.32 7.5 9.42 11.64 13.58 24.17 5.21 200 540 828.1 6.49 16.1,6 1.2443 10.5,9 762.0D 12.203 17.32 7.5 9.42 11.64 13.58 24.17 5.21 200 540 828.1 6.49 6.5 | ly 2020 | | | | | | | | | | | | | | | | 518 Flows 2,883 gpd. Increased recycle rate. | | 400 74 72 108.0 ND 84.60 466 67 44.0 8.9 4.08 25.80 ND 29.88 0.34 1080 1.260 712 6 133.0 ND ND 81.50 36 414 5.9 15 4.56 24.1 ND 6.97 0.38 520 180 65 102.0 ND ND 79.00 361 4.0 4.0 75 262 247 ND 5.09 0.96 946 828.1 649 161.6 1.76 1.2443 105.9 762.01 12.203 17.32 7.6 9.42 11.64 13.58 24.17 5.21 200 AVERGRE TN & REMOVAL: 8596 | ug 2020 | | | | | | | | | 7 | | | | | | | 1000 Flows 2,033 gpd. Compliant Sample. Flows 2,733 gpd. Site has had frequent power Intercuptions over the last month or so, which caused the system to be incomplied. | | 1,260 712 6 133.0 ND ND 81.50 414 5.9 15 7.5 4.56 2.41 ND 6.97 0.38 75 75 75 2.62 2.47 ND 5.09 0.96 6.9 75 75 75 75 75 75 75 7 | pt 2020 | 400 | | | | | | | | | | | | 2000 | 100 | | 1080 period of time. TN reduction improved with consistant system operation. | | 1,260 712 6 133.0 ND ND 81.50 414 5.9 15 7.5 4.56 2.41 ND 6.97 0.38 75 75 180 6.5 102.0 ND 79.00 361 6.40 7.5 2.62 2.47 ND 5.09 0.96 69 69 69 69 69 69 69 | ct 2020 | | | | | | | | | | | | | | | | No Test. System off due to power outage. | | S20 180 6.5 102.0 ND ND 79.00 361 C4.0 7.5 262 2.47 ND 5.09 0.96 69 | ov 2020 | | | | | | | | 4 5.5 | - 1 | | | | | | | 75 Flows 2,150 gpd Compliant Sample | | 1.6 1.76 1.2443 105.9 762.09 12.203 17.32 7.6 9.42 11.64 13.536 24.17 5.21 5.21 5.22 5.22 5.22 5.22 5.22 5.22 | ec 2020 | | | | | | | | 1 <4.0 | 0.450 | | | | | | | 69 Compliant Sample | | | NG | | | | | | | | 9 12.20 | 3 17.32 | | | | | | | 200 | | + | | | | - | | | | | | | | + | | 1 | | | | | | verall Av | rerage TI | N & Re | | 82% | _ | | | | | | | | | | | | | (2) | | |-------|--| | nck | | | MATUR | | | 文字 | | | | N | | | FOG | mg/L | 2.1 | 1.6 | 1.2 | N/A | 1.7 | 2.2 | J. C | 0.0 | 7.7 | 1,0 | 1.2 | 1.9 | 1.2 | 1.2 | 1.2 | 1.2 | 1.3 | 1.2 | 1.4 | 1.4 | 1.4 | 1.2 | 1.2 | 1.2 | 1.2 | 7.7 | 1.3 | 1.7 | | 1.46 | | | | | | |----------|--------------------------|-----------------------|----------|------------|-------|---------|---------|--------|---------|--------|--------|--------|--------|--------|----------|--------|---------|---------|--------|---------|--------|----------|--------|--------|--------|----------|----------|--------|---------|---------|--------|---------|--------|--------|--------|---|----------|--|---------------|---------| | d | E C | | | 2 | | 33 | 33 | 57 | 66 | 99 | 208 | 7 5 | 77 | 4 6 | 4 | 33 | 31 | 92 | 54 | 72 | 32 | 80 | 167 | 33 | 23 | 273 | 251 | 270 | 506 | 235 | 7 7 | 0 0 | 202 | 17 | 217 | L | | | | - | | (2) | _ | | | Alkalinity | mg/L | 18 | 183 | 16 | 15 | 15 | 75 | 7 | 7 | 7 | 7.0 | 18 | 2 | 2 | 25 | 17 | 18 | 2(| 1(| 15 | 25 | 2 | 2 | 2 | 2(| 2 | 7 | 1 | 2 1 | 1. | 2 | | | | | | | V | | | | .e | 7 | 15 | ND | Q | ND | 0 | 92 | 2 9 | 2 (| 7 (| 0 4 | 27 | 21 | 81 | .7 | 23 | 11 | .5 | 33 | 37 | 21 | 23 | 13 | 35 | 9 | 200 | 8 5 | 7 1 | ON CN | QN | 88 | L | | | | _ | | MATULUCK | | | | Ammonia | mg/L | 1.45 | 2 | 2 | 4 | 2 | 0.56 | - | < 0 | | 0 | 0 | 0 | 0.18 | 0 | 0.3 | 0.11 | 0 | 0.33 | 0.37 | 0.21 | 4.63 | 0.13 | 1.85 | 67.6 | 0.53 | 0.28 | 0.12 | 5 4 | 2 | 3.68 | | | | | | | ATU | | | | Z | mg/L
| 11.66 | 5.52 | 11.66 | 5.09 | 4.03 | 4.83 | 2.43 | 76.7 | 2.40 | 3.77 | 4.91 | 4.21 | 5.01 | 4.30 | 7.10 | 4.77 | 4.74 | 3.44 | 5 | 3.92 | 4.43 | 2.57 | 4.75 | 15.90 | 1.98 | 2.12 | 7.97 | 1.35 | 1.80 | 4.82 | | | | | - | | ٤ | | | UEN | ite | | | | | QN | 27 | Q : | 2 5 | 2 9 | 2 4 | 2 5 | Q | 9 | Q. | 32 | .62 | QN | DN | Q. | 9 | 9 | 9 | QN
ON | 0.32 | | 2 2 | 1.26 | ON CO | /y CN | QN | 86.0 | | | | | | | P | | | EFFLUENT | Nitrite | | (1) | FOG | ١.0 | | Z | | pdg | | Nitrate | mg/L | 4.80 | 4.87 | 10.60 | 4.09 | 2.58 | 3.86 | 1.32 | 2.73 | 1.61 | 2 81 | 3.99 | 3.33 | 3.20 | 3.06 | 5.72 | 3.89 | 3.45 | 1.44 | 3.98 | 2.89 | 2.47 | 1.24 | 1.27 | S | 0.52 | 2.81 | 0.87 | N 4 33 | 0.96 | 3.10 | | | | % Removal FOG | 99.52% | | | | 000 | | TKN | mg/L | 3.05 | 0.65 | 1.06 | 1.00 | 1.18 | 0.97 | 1.11 | 0.69 | 0.75 | 1.0.1 | 3.92 | 3.88 | 1.81 | 1.24 | 1.38 | 88.0 | 1.29 | 2.00 | 1.15 | 1.03 | 1.96 | 1.33 | 3.16 | 15.90 | 1.46 | 5 5 | 1.80 | 50 N | 0.84 | 1.79 | | | | % Rei | 5 | | | | sized for 6,000 | | Н | | | | | | | 7.6 | | | | | | 7.6 | | | | 7.6 (| | | | | | | 8.0 | | | | 1.9 | | | | | | | S | | | | rier® | ed f | | TSS | - 250 | 5.5 | | | | | <4.0 | | | | C.+2 | | | | | | | | | | | | | | | | | | ×4.0 | | 7. | | | | val TS | % | | | Barı | - siz | | | | | | | | | <4.0 < | | C4.0 | | 24.0 | | <4.0 < | | <4.0 < | | | | | | | | | | | | | | ×4.0 | | | | | | % Removal TSS | %66 | | | Bio | ,290 | | 3 BOD | ľ | | | | | | | % | | | | bics | ow 3 | | FOG | mg/L | N/A | 96.6 | 71.3 | 1,970 | | 7 | | | | 61 | | 45.9 | | | | | | | ., | | | 71.6 | 62.4 | | | | | 133.0 | | 304.8 | | | | 0 | | | | BioMicrobics BioBarrier® | - design flow 3,290 - | | Alkalinity | mg/L | 424 | 543 | 615 | 549 | 429 | 501 | 455 | 414 | 3// | 450 | 369 | 560 | 828 | 843 | 809 | 579 | 557 | 399 | 513 | 632 | 530 | 72.7 | 652 | 206 | 704 | 848 | 435 | 329 | 378 | 512.54 | | | | % Removal BOD | 99.7% | | | Bic | nt - de | | ionia | mg/L | 61.6 | 103.0 | 112.0 | 109.0 | 62.5 | 82.0 | 0.17 | 08.70 | 07.70 | 87.50 | 57.80 | 92.00 | 13.00 | 148.00 | 120.00 | 124.00 | 112.00 | 56.70 | 72.50 | 81.10 | 14.10 | 83.40 | 103.00 | 67.60 | 108.00 | 04.00 | 05.50 | 83.70 | 87.20 | 82.3 | | | | % Ren | 6 | | | | aurant | | Ammonia | | | | | | | | | | | | | | 17 | 17 | 13 | 13 | 13 | | | | | ~ | 10 | | 11 | 7 | | | | | | | | | | | | | Resta | INFLUENT | Nitrite | mg/L | QN | QN | QN | 3.94 | DN | QN | ON S | ON S | ON C | ON CN | GN | QN | QN | DN | ND | ND | DN | QN | 4.77 | ND | QN | ND | 0.34 | 5.48 | QN S | 3.38 | ON : | A 83 | QN | ND | | | | TN | | | | | | INFL | Nitrate | mg/L | QN | QN | QN | ND | ND | 0.5 | 2 | ON S | 16.0 | Z Z | CN | QN | QN | ND | ND | ND | QN | QN | ND | ND | QN | 3.98 | QN | Q. | QN S | 0.93 | 0.57 | 0 N | Q | N | | | | % Removal TN | %96 | | | | | | TKN | | 81.1 | 6.66 | 155.0 | 114.0 | 99.3 | 126.0 | 80.4 | 70.7 | 1.10 | 01 1 | 70.5 | 04.0 | 58.0 | 155.0 | 13.0 | 28.0 | 53.0 | 03.0 | 101.0 | 113.0 | 116.0 | 104.0 | 147.0 | 92.8 | 89.1 | 55.0 | 88.9 | 104.0 | 111.0 | 120.3 | | \vdash | | % Re | | | | | | | Ha | | | 5.7 | | | | 5.9 12 | | | - 1 | 0.0 | | | | 6.1 15 | | | | | | | | | ` | 5.8 | | | - | 5.7 IC | | | 1 | \vdash | | | | | | | | | TSS | E | 136 5 | | | | | | | 87 | | | | 78 | | 580 | | | | | | | | | | | 86 | | 536 | | | r, | | H | | | Average | | | | | | | = | | | | | | 7 | | | | | | | | | | | 10 6,930 | | 1,0 | | | | | | | | | | | | | | | | Ave | | | | | | BOD | mg/L | 740 | 1,220 | 1,180 | 960 | 960 | 4,010 | 1,120 | 800 | 810 | 1 100 | 90 | 96 | 1,22 | 1,830 | 1,22 | 1,46 | 410 | 2,50 | 1,910 | 1,140 | 1,040 | 1,11 | 1,29 | 1,100 | 1,13 | 1,100 | 933 | 738 | 260 | 1187 | | | | | | | | | | | | | June 16 | July 16 | Aug 16 | Sept 16 | Oct 16 | Nov 16 | Dec 16 | Jan 17 | Feb 17 | March 17 | May 17 | June 17 | July 17 | Aug 17 | Sept 17 | Oct 17 | Nov 17 | Dec 17 | Jan 18 | Feb 18 | March 18 | April 18 | May 18 | June 18 | July 18 | Aug 18 | Sept 18 | Oct 18 | Der 18 | AVG | | | | | | MATUALICE BAR | | | | | | | | | | | | | | | | 7/ | 13:X | 10010101 | 0 | | |----------------------------------|-------------|-------------------|-----------|-----------|-----------------|---|--|---------------------------------------|------------|----------|------------------------|-----------|-------|----------|-----------|---------|----------|------------|------| | | | | | | | | | BioMicrobics BioBarrier® | obics | Biol | 3arrier | @ | | | | | 2 | 7 8 | | | | | | | | | Res | Restaurant - | - design flow 3,290 - sized for 6,000 | Flow 3 | 3,290 | - sized | for 6 | 000, | pdg | | | | | | | | | | | | INFI | INFLUENT | | | | | | | | EF | EFFLUENT | ト | | | | | | BOD | TSS | Hd | TKN | Nitrate | Nitrite | Ammonia | Alkalinity | FOG | BOD | | Ha | TKN | Nitrate | Nitrite | | Ammonia | Alkalinity | FOG | | | mg/L | mg/L | mg/L | mg/L | mg/L | | mg/L | mg/L | mg/L | | TSS mg/L | mg/L | mg/L | mg/L | | TN mg/L | mg/L | mg/L | mg/L | | Jan 19 | 339 | | 6.5 | 43.0 | QN | | 31.9 | 234 | 61 | <4.0 | <4.0 | 7.9 | 0.55 | QN | QN | 0.55 | 0.22 | 183 | 1.2 | | Feb 19 | 359 | 87 | 6.4 | 69.7 | 0.12 | QN | 52.2 | 462 | 47.6 | <4.0 | <4.0 | 8.4 | 0.78 | 0.54 | QN | 1.32 | 0.33 | 283 | 2.71 | | March 19 | 711 | 400 | 5.7 | 76.2 | DN | QN | 58.0 | 421 | 28.1 | <4.0 | <4.0 | 8.0 | 1.25 | 1.66 | DN | 2.91 | DN | 252 | 3.6 | | April 19 | 1020 | | 6.1 | 87.1 | QN | QN | 82.3 | 809 | 99.5 | | <4.0 | 7.7 | 1.47 | 3.38 | DN | 4.85 | ND | 252 | 2.87 | | May 19 | 1003 | | 9 | 174.0 | 3.53 | 0.43 | 106.0 | 652 | 41.6 | 6 | <4.0 | 7.8 | 13.70 | 2.65 | ND | 16.35 | 12.6 | 277 | 1.54 | | June 19 | 719 | 84 | 6.7 | 188.0 | DN | ND | 163.0 | 683 | 45 | 17 | <4.0 | 7.6 | 32.00 | 1.30 | ND | 33.30* | 28.1 | 318 | 3.54 | | July 19 | * | | * | * | * | * | ** | * | * | <4.0 | <4.0 | 7.4 | 2.05 | 2.41 | ON | 4.46 | 1.25 | 1.25 | * | | Aug 19 | 999 | | 9.9 | 250.0 | QN | ND | 127.00 | 965 | 26 | <4.0 | <4.0 | 7.7 | 2.94 | 1.33 | DN | 4.27 | QN | 08 | 1.5 | | Sept 19 | 980 | ,, | 6.1 | 117.0 | QN | ND | 100.00 | 210 | 40.10 | <4.0 | <4.0 | 7.6 | 1.03 | 1.21 | DN | 2.24 | 0.35 | 152 | 2.55 | | Oct 19 | 240 | | 6.1 | 103.0 | QN | ND | 70.60 | 426 | 34.2 | 9.36 | <4.0 | 7.6 | 2.31 | QN | ON | 2.31 | 0.49 | 184 | 43 | | Nov 19 | 88 | 99 | 6.4 | 84.3 | QN | QN | 06.69 | 442 | 19 | <4.0 | <4.0 | 7.9 | 0.64 | QN | QN | 0.64 | 0.37 | 142 | 89.3 | | Dec 19 | 740 | 236 | 6.3 | 91.1 | QN | 3.63 | 55.80 | 408 | თ | <4.0 | <4.0 | 7.9 | 2.53 | 1.24 | ND | 3.77 | QN | 210 | 1.2 | | Jan 20 | 606 | 104 | 6.1 | 91.6 | QN | QN | 59.90 | 480 | | 4.4 | <4.0 | 7.8 | 2.48 | 1.16 | QN | 3.64 | ND | 229 | 1.2 | | Feb 20 | 36.9 | | _ | 93.9 | QN | QN | 43.20 | 447 | 38.3 | 16.1 | <4.0 | 7.4 | 3.93 | QN | QN | 3.93 | 0.73 | 241 | 1.2 | | March 20 | COVID | COVID COVID | _ | COVID | COVID | COVID | COVID | COVID | COVID | | <4.0 | 7.9 | 0.84 | 0.58 | DN | 1.42 | DN | 201 | 1.4 | | April 20 | COVID | covid covid covid | | COVID | COVID | | COVID | COVID | COVID | | <4.0 | 7.9 | 1.81 | 0.67 | DN | 2.48 | 0.18 | 256 | 2.4 | | May 20 | COVID | COVID COVID | | COVID | COVID | | COVID | COVID | COVID | <4.0 | <4.0 | 7.9 | 2.23 | 96.0 | ON | 3.19 | ND | 253 | 4.4 | | June 20 | COVID | COVID COVID | | COVID | COVID | | COVID | COVID | COVID | <4.0 | 6 | 7.7 | 1.64 | 0.81 | ND | 2.45 | 0.19 | 150 | * | | July 20 | COVID | COVID COVID | | COVID | COVID | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.6 | 1.57 | 5.81 | DN | 7.38 | 0.38 | 218 | 3.4 | | Aug 20 | COVID | | | COVID | COVID | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.9 | 92.0 | 5.32 | ON | 80.9 | ND | 179 | 1.2 | | Sept 20 | COVID | COVID COVID | | COVID | COVID | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.7 | 1.06 | 4.13 | ON | 5.19 | ND | 195 | 2.5 | | Oct 20 | COVID | covid covid covid | | COVID | COVID | | COVID | COVID | COVID | <4.0 | <4.0 | 7.8 | 0.61 | 2.12 | ND | 2.73 | 0.3 | 225 | <2.4 | | Nov 20 | COVID | 7 | | COVID | COVID | 8 | COVID | COVID | COVID | ' | <4.0 | 6.9 | 0.52 | 1.32 | QN | 1.84 | ND | 216 | * | | AVG | 8.009 | 111.6 | 6.24 | 113.0 | DN | ND | 78.4 | 466.85 | 39.0 | 5.8 | <4.0 | 7.739 | 3.42 | 2.03 | ND | 3.82 | 3.50 | 204 | 8.98 | | | - | | \dagger | 1 | | | | | | | | \dagger | | | \dagger | 6 | | H | , 6 | | | 0 | 201 ch. co can of \0 | Ų | 9 | | (| | | | | | | | | | 70. | 70 Reffloval IN | 2 | 20 02 | No heliloval bod | | 200 | מוווסאפו | 3 | 20 | בווסמו ב | 2 | 1 | 1 | | | | | | Average | e. | | 97% | | | 99.3% | | | 95% | | | 95% | | | | | T | | * Biologia | er intion | n treatme | nt proce | 11330 336 | ared in lun | p 19. cyctp | *Biological discunsting in treatment process occurred in 11 system recoverd and was compliant by 11/19 | il was complian | ant hy III | 01 > | | 1 | | | | | | | | | ************* | a dependent | 7 | - 1 | | | - 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | | | 20,000 | | | 1 | | | - | 1 | | | | | parameter not tested | ลารลา าดม | | † | | | | | | | | | 1 | | | + | | | | | | COVID= no influent samples taken | Tiuent sar | nples take | 5 | | | | | | | | | | | | | | | | | AD-GREE | | | ž | shab Facility | Rehab Facility - design flow 1,450 gpd | w 1,450 gpd | | | | |----------|----------|----------|---------------|--|---------------|---------------|---------|---------| | | | INFLUENT | ENT | | | EFFLUENT | ENT | | | | BOD mg/L | TSS mg/L | pH mg/L | TKN mg/L | BOD mg/L | TSS mg/L | pH mg/L | TN mg/L | | Sept 18 | 476 | 80 | 6.5 | 41.4 | 8.8 | <4.0 | 7.4 | 5.84 | | Oct 18 | 297 | 55 | 7.2 | 106.0 | <4.0 | <4.0 | 7.6 | 2.61 | | Nov 18 | 162 | 75 | 6.9 | 59.0 | <4.0 | <4.0 | 7.3 | 4.66 | | Dec 18 | 785 | 276 | 9 | 74.6 | <4.0 | <4.0 | 7.3 | 5.84 | | Jan
19 | 320 | 117 | 7.1 | 87.2 | <4.0 | <4.0 | 7.1 | 10.25 | | Feb 19 | 1,170 | 2,870 | 7.5 | 124.0 | 4.66 | <4.0 | 7.3 | 22.9* | | March 19 | 339 | 85 | 7.1 | 85.2 | 4.42 | <4.0 | 7.4 | 5.28 | | April 19 | 391 | 126 | 6.9 | 114.0 | <4.0 | <4.0 | 7.6 | 6.41 | | May 19 | 286 | 61 | 8.9 | 143.0 | <4.0 | <4.0 | 7.2 | 7.41 | | June 19 | 252 | 84 | 6.7 | 135.0 | <4.0 | <4.0 | 7.2 | 90'6 | | July 19 | 120 | 92 | 9.9 | 137.0 | <4.0 | <4.0 | 6.9 | 4.85 | | Aug 19 | 170 | 72 | 8.9 | 125.0 | <4.0 | 27 | 7.2 | 12.27 | | Sept 19 | 110 | 36 | 6.9 | 195.0 | <4.0 | 5.5 | 7.4 | 4.11 | | Oct 19 | 210.0 | 40 | 6.8 | 126.0 | <4.0 | 9 | 7.3 | 9:38 | | Nov 19 | 255 | 52 | 7 | 104 | <4.0 | <4.0 | 6.9 | 13.58 | | Dec 19 | 270 | 40 | 7 | 148 | <4.0 | <4.0 | 6.1 | 33.67** | | Jan 20 | 278 | 64 | 7 | 114 | <4.0 | <4.0 | 7.5 | 7.19 | | Feb 20 | 420 | 48 | 7 | 125 | <4.0 | <4.0 | 7.4 | 4.08 | | March 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.5 | 2.70 | | April 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.2 | 5.64 | | May 20 | COVID | COVID | COVID | COVID | 4 | <4.0 | 7.2 | 6.52 | | June 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.3 | 5.67 | | July 20 | COVID | COVID | COVID | COVID | 11.5 | <4.0 | 7.2 | 11.26 | | Aug 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.4 | 14.89 | | Sept 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.3 | | | Oct 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.3 | 5.82 | | Nov 20 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 7.2 | 6.53 | | AVG | 350.61 | 237.39 | 6.93 | 113.5 | 4.58 | 5.15 | 7.25 | 7.02 | | | | | | | | | | | | | | | | % Removal TN | % Removal TSS | % Removal BOD | | | | | | Average | | 94% | %86 | %66 | | | | | | | | | | | | | | | | | BioMicro | BioMicrobics BioBarrier® | rier® | Cumb | Cumberwoo FAGAS | SAZS | |------------|----------|-------------------|-----------|--------------------------|--|----------|-----------------|---------------| | | | Convenience | Store/Gas | Station - Des | Store/Gas Station - Design flow 1,000 mg/L |) mg/L | Bors | Be TS Materia | | | | INFLUENT | ENT | | | EFFLUENT | | | | | BOD mg/L | BOD mg/L TSS mg/L | pH mg/L | pH mg/L TKN mg/L | BOD mg/L TSS mg/L pH mg/L TN mg/L | TSS mg/L | J/gm Hd | TN mg/L | | March 2019 | 375 | 116 | 6.18 | 57.2 | 6.04 | <4.0 | 8.1 | 14.37 | | Sept 2019 | 1,570 | 164 | 5.8 | 147.0 | <4.0 | 5 | 7.7 | 4.68 | | June 2019 | 460 | 178 | 6.2 | 73.9 | <4.0 | <4.0 | 2.7 | 4.95 | | Jan 2020 | 510 | 2.67 | 6.1 | 188.0 | <4.0 | <4.0 | 7.8 | 9.43 | | Aug 2020 | COVID | COVID | COVID | COVID | <4.0 | <4.0 | 8.0 | 4.85 | | Dec 2020 | 069 | 98 | 6.3 | 107.0 | <4.0 | <4.0 | 7.4 | 2.83 | | AVG | 721.00 | 124.70 | 6.12 | 114.6 | 4.58 | 5.15 | 7.75 | 6.85 | | | | | | | | | | | | | | | | % Removal TN | % Removal TSS | Removal | | | | | | Average | | 94% | %96 | %66 | # Appendix 5 BioMicrobics BioBarrier® Submission Westport Noquochoke Village – Westport, MA In Appendix 5 please find MBR Treatment System case studies and operational data. You will note that the MBR Technology is used for a variety of applications; and is, in many cases, the best option for an onsite treatment solution. ### CASE STUDY: GILLETTE STADIUM ### SYSTEM DESCRIPTION Location: Foxborough, Massachusetts (latitude: 42° 05′ 07.72" N; longitude: 71° 16′ 16.34" W) Collection: A gravity collection system brings all wastewater to several low points on the properties where pump stations transfer sewage to the treatment plant, which is located behind the stadium in a separate utility building. Treatment: Wastewater equalization tanks buffer wide variations in flow because of scheduled stadium events, which can change the population served by the system by more than 75,000 on a given day. The treatment plant is a membrane bioreactor that Photos licensed under Creative Commons 2.0 License. Photo credit: www.flickr.com/photos/jkgreenstein/4243828385/ uses the Modified Ludzack-Ettinger (MLE) biological anoxic-aerobic process and ozone and ultrafiltration for polishing and disinfection. A 1900 m³ (600, 000 gal) ground-level tank and an elevated 1900 m³ (500, 000 gal) water storage tank provide water distribution pressure control and help mitigate the wide fluctuations in daily flow. Product disposition: Nonpotable water is supplied to the toilet facilities for use as flush water. As flush water demand increases because of increasing use, there is an increase in wastewater flow. While processing this flow over varying flow conditions, the system first satisfies the demand for nonpotable reuse water. As the nonpotable water demand is fulfilled, excess water is recharged to groundwater via subsurface infiltration chambers located beneath the parking lots. Residuals are hauled for offsite disposal as a liquid sludge. Flowrate: 4900 m³/d (1.3 mgd) peak flow; design includes a 3800 m³ (1 million gal) equalization tank to buffer wide flow variations because of stadium events. **Service area:** Commercial community that consists of a 68,000-seat NFL Stadium and surrounding commercial properties that consist of outlet stores, hotel, restaurants, movie theatres, and other retail. Case study type: Development-scale cluster reuse system for commercial redevelopment and NFL stadium. Management type: Private, with long-term O&M contract ### DESCRIPTION Gillette Stadium, located in Foxborough, Massachusetts, and the surrounding commercial development is served by a water reuse system that provides treatment of all wastewater that is produced from within its service area. The system currently has a capacity of 4900 m³/d (1.3 mgd) peak flow and includes 3800 m³ (1 million gal) of equalization tanks to buffer wide flow variations during stadium events. All wastewater is treated to Massachusetts' direct water reuse standards and the treated water is currently used for toilet flushing. Excess treated water is recharged to the groundwater via subsurface recharge fields located beneath the parking lots. Treated water is stored in an elevated water tank that provides storage and pressure control for the nonpotable water distribution system. Elevated 1900 m3 (500 000 gal) water storage tank for reclaimed water at Gillette Stadium. The wastewater treatment system consists of a membrane bioreactor with denitrification and UV disinfection. Given the commercial nature of the properties served, the water reuse system supplies approximately 75% of the total water used with the balance provided via a publicly owned potable well. The wastewater system is completely independent of any regional wastewater management infrastructure and serves as a standalone decentralized utility. The water supply is owned by the municipality and is derived from a confined aquifer with limited capacity. The project was intended to both replace existing non-performing infrastructure and to allow for expansion to serve new economic development in the area. Wastewater at the old stadium was managed via an extended aeration plant with discharge to surface water. The property existed as an older stadium, which was demolished and rebuilt along with other commercial support services. The town of Foxborough allowed the service area to include the stadium property plus some adjoining properties along Route 1, which were zoned for commercial development. The town controls the service area, which is limited by available expansion area for the water reuse plant and at the time, the Town of Foxborough's willingness to allow the expansion. ### PROJECT GOALS The overarching system objective was to provide water and wastewater infrastructure to allow reconstruction and expansion of the stadium, while providing for economic growth in the area. ### TIMELINE Project planning, design, and permitting were conducted over a period of 18 months that ended in 1999 when construction broke ground. The facility was completed and became operational in 2000 and has operated since that time. Cooperation of the Massachusetts Department of Environmental Protection was instrumental in moving the permit process along, and a design-build-operate contracting method was used to expedite the project delivery schedule and manage costs. ### **DECISION MAKING** The most important factors in selecting a decentralized approach for Gillette Stadium were the inability to extend the regional infrastructure, the limited water resources, and the lack of public support at that time for a centralized system to serve a wider area of the town. Residential development in this area is well-served by onsite septic systems and there was no public mandate for a centralized wastewater system. In addition, the centralized water supply is sourced from a limited capacity confined aquifer, thereby placing another constraint on development and economic growth. Ultimately, water reuse was the only way to viably provide the required water resource services. Because of the high quality designation of potential receiving waters, which would have limited the potential to discharge treated wastewater effluent, water reuse and groundwater recharge were considered at a relatively early stage in the development planning and were adopted once feasibility analysis proved the site's viability. The water reuse approach was able to solve both the water supply and wastewater discharge limitations by reducing the water supply and wastewater discharge demands by 75%, making a groundwater recharge system viable. In addition to recharging the water supply aquifer, this system provides benefits associated with supplementing base flow to the local streams, supporting the natural water cycle within the service area. Given the extensive economic investment in the stadium and surrounding commercial development and the environmentally sensitive nature of the area, the absolute highest quality performance was necessary. There was zero tolerance for any system performance failure due to the resulting loss
of millions of dollars in revenue should use of the facilities be interrupted for any reason. Accordingly, membrane bioreactor technology was selected as a means of assuring high quality nonpotable water even under conditions where the flow quantity and strength would be highly variable. The MBR technology was preferred because it provided the confidence necessary to assure safe and successful performance. The developer made the final decision about the technology to be used based on the recommendation of the design engineer, Applied Water Management, Inc. The decision to use a water reuse system with groundwater recharge backup was supported by an engineering feasibility analysis and data from the nearby Wrentham Factory Outlet Mall facility, which had been operating for several years with a similar system in place. Overall cost was an important factor, and the MBR water reuse approach emerged as the lowest cost approach that yielded the best outcome by allowing economic development while protecting delicate water resources. Other alternatives were originally considered, including extension of regional water and wastewater lines from the Massachusetts Water Resource Authority (MWRA). This extension, however, was not desirable because it would have resulted in more sprawling development in rural areas. It also would have been very expensive and complex, involving eight different towns and multiple approvals. Construction of a Sequencing Batch Reactor (SBR) system to serve the town was also considered, but rejected, in the analysis of alternatives. Although these alternatives were politically untenable, most political forces desired to have the stadium and team remain at this location and the Town of Foxborough desired the economic growth along the Rt. 1 corridor. There was overall widespread support for the project if the negative impacts could be avoided. Final infrastructure decisions were made by the developers of the Gillette Stadium property together with the municipal officials of the Town of Foxborough. However, the project went through a public review for land development which involved actions by the Foxborough Board of Water and Sewer, the Planning Board and Board of Selectmen. Public hearings were conducted on the proposed development and on the water reuse system service area. The Town of Foxborough is governed by the traditional Open Town Meeting form of government that is typical for New England and tends to provide direct public input to key decisions. A Town Meeting vote was held to approve this project which included some broader municipal improvements including the construction of elevated water supply tanks. Economic growth was important to the town and the vote passed. The Massachusetts Department of Environmental Protection administers the Pollution Discharge Elimination Permitting program and the Massachusetts Office of Energy and Environmental Affairs administers the Massachusetts Environmental Policy Act (MEPA), which is the process for environmental assessment and review for new developments. Both the MADEP permits and the MEPA review process were favorable to the project and supported the water reuse concept. ### **CHALLENGES** This project serves as a good example of how innovative solutions can move ahead when all parties work together in identifying constraints and concerns and to work out appropriate mitigating measures. Strong cooperation from the regulatory agencies involved allowed the system to readily be constructed as envisioned. However, subsequently, MADEP developed water reuse standards to provide clear guidelines for future water reuse infrastructure. It was also important to have the cooperation of the regulatory authorities who allowed performance standards implemented at an earlier and smaller facility (Wrentham Outlet Mall) to apply to a much larger and more significant project. ### FINANCING The project was funded by the developer and the town. Through public finance bonds, the town provided funding for portions of the system that provided direct benefits beyond Gillette Stadium. The town's portion included a new potable water storage tank and other associated appurtenances. The Kraft Group, developers of the stadium, privately financed the water reuse plant and associated distribution piping and recharge fields. Other funding alternatives were not considered because the project was complex and had to be approved in a timely manner. Other sources of funding were not readily available and would have possibly caused delays. In many senses, the overall project was a public-private partnership where the developer and municipality worked cooperatively with regards to funding aspects of the project, but the developer provided the bulk of the financing and all of the project design and construction management. ### MANAGEMENT The treatment facility and water reuse pipingis owned by the developerwhile the Town owns the water reuse tank and all water supply infrastructure. Operating and management risks were shared with the designer-builder, Applied Water Management, under a 20-year performance contract. The town owns the potable water system. Applied Water Management provided the feasibility analysis, design, and construction and operates the system. Operating and maintenance costs are covered under a 20-year operating agreement. The Town of Foxborough preferred that the developer take responsibility for system construction and operation, but reserved capacity in the system for expansion as other commercial development occurs. The initial system was constructed for the stadium only and had an average flow capacity of 946 m³/d (250,000 gpd). Subsequently, the system has been expanded to the current 4900 m³/d (1.3 mgd) capacity to serve additional commercial development by adding treatment trains as planned in the design. All operating costs are paid for by the stadium complex owners who assess property tenants accordingly. Applied Water Management is fully responsible for the system operation. ### **PERMITS** The system was permitted through the MADEP under the State Pollution Discharge Elimination System program. It is administered and enforced by the MADEP, which requires monthly monitoring, and the completion of Discharge Monitoring Reports. Permitting the complete system required integration of groundwater discharge permits together with water reuse requirements. Water reuse provisions were not formally defined at the time of this project, but precedent had been established through the implementation of several previous water reuse projects. Overall support for the project helped the regulators feel comfortable moving forward with the required permits. Subsequent adoption of statewide water reuse standards should facilitate the implementation of future decentralized water reuse projects in Massachusetts. ### **PERFORMANCE** The project is in compliance with all permits and is meeting water quality objectives. The system has produced reclaimed water of the quality required, and the stadium and surrounding commercial development have been successful in providing a solid economic base for the Town of Foxborough. ### LINKS www.amwater.com/products-and-services/about-us/applied-water-management-group.html www.thekraftgroup.com/environment/#gilletteStadium ### Title: Onsite Residential Membrane Systems, Possible? ### Homeowners test the latest advancements for their wastewater treatment ### Situation Since early 2001, Alternative Wastewater Systems (AWS) of Idaho has distributed Bio-Microbics products. Very familiar with the MicroFAST® and other FAST® systems, they wanted to try out the new BioBarrier® Membrane Bioreactor (MBR) unit, also from Bio-Microbics. Ryan Spiers of Spiers Construction identified a family needing a MicroFAST® 0.5 and asked them if they would be willing to upgrade at no additional cost to a BioBarrier® MBR system. With all of the benefits that this system promises, they agreed. ### Solution First of its kind in Idaho, etg. evaluate membrane treatment for the single family home, the NSF®/ANSI STD 40/245 certified system was installed and has been tested every other month to show the effluent being treated to direct discharge characteristics, i.e. effluent quality of BOD <2 mg/L, TSS <2, Ammonia <1 and reduces Fecal Coliform and E. Coli to less than 10 cfu. With these advanced, biological nutrient removal capabilities, the BioBarrier® is engineered in a small footprint and > immersed directly in the aeration process in the tank. Utilizing flat sheet membranes for a versatile design and robust process, the BioBarrier® has a high surface area of membrane material in 'a double plate configuration. The membranes and processes used'in this advanced system act as a physical barrier for nearly all common pollutants found in wastewater. The treated water moves through the pores to the space between the films. A pump then extracts the clean water to discharge in to the environment. Using a completely automated control strategy, the unique operation sequence of the BioBarrier® system requires no complicated backwash. pg 1 of 1 ### Results The BioBarrier® MBR system, which received the 2009 Technology Award presented by the Environmental Business Journal (EBJ), provides new opportunities for wastewater recycling. After more than 8 months in operation, the test results have proven the system is capable for direct discharge. "I really am amazed at what this little unit does, California standards on what class A effluent is can be easily attained by this unit all by itself. We've been testing the coliforms and I believe there is no need for further disinfection. The effluent is at acceptable levels for direct discharge to any where you would want to put it," says Mr. Spiers. The BioBarrier® MBRs and HSMBR® systems are one of first MBR systems specifically designed for the onsite market. More than ever, onsite professionals and end users choose Bio-Microbics for their
wastewater treatment requirements to help conserve natural resources, protect ground and surface waters, and overcome land constraints. ### About Bio-Microbics, Inc. With a worldwide emphasis on environmental concerns and improving water quality, Bio-Microbics manufactures proven wastewater and storm water treatment systems decentralized communities commercial properties. Ideal for concrete, fiberglass, steel, or plastic tanks, the simple, preengineered, modular design of FAST® [including our MicroFAST[®]] popular wastewater treatment systems deliver consistent performance. Successfully used for over 35 years in municipal, Industrial, marine, commercial and residential properties located around the globe, the advanced FAST® (Fixed Activated Sludge Treatment) technology is help treat the world's water better. Bio-Wicrobics...Better Water. Better World.® easy to install and maintain. Our advanced wastewater and stormwater treatment products Contact: Jennifer Clineros, Manager Marketing Communications Phone: (913) 422-0707 • FAX: (913) 422-0808 E-mail: |clsneros@blomicrobics.com • Web: www.blomicrobics.com pg 2 of 2 # Design Considerations for the Complex Waste Streams of Wineries WINERY WASTEWATER TREATMENT | By Sheldon Sapoznik, REHS Complexity is a term often used in tasting rooms to describe a fine wine, although little thought and understanding is given to the complexity of treating winery wastewater. It is vital to understand not only the nature of winery wastewater, but the by-products produced during the wine making process, such as juice acidity, lees, and cleaning agents that dictate the various constituents and concentrations encountered. Beyond the romanticized season of harvest and the demands created by crush, other activities that generate wastewater throughout the year include barrel washing, fermentation tank washing, and equipment cleaning from racking and bottling operations. Unlike residential wastewater, winery wastewater usually does not contain pathogenic bacteria in the waste stream; however, Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) are found in significantly higher concentrations. In fact, BOD and TSS concentrations can be forty times as high as household wastewater with 12,000 mg/L BOD and 6,000 mg/L TSS typical during harvest activities. At other times of the year, the various winemaking activities create fluctuating flows, which create system over-capacity concerns. The need for versatility in design and operation is key in selecting a winery wastewater treatment system. There are several factors to consider in all winery wastewater treatment system projects. Determining the actual wastewater flows during crush (the highest wastewater generating operation at a winery) can be challenging. These flows are based on industry experience, regulatory agency calculations, as well as input and data from the winery itself. Misjudging the maximum design flow and pollutant concentrations can be devastating to a winery treatment system. However, oversizing a system can equally create functional problems and add unnecessary cost. A winery wastewater treatment system should have the flexibility to handle the high and low flows and loads. Most successful winery wastewater treatment systems include proper primary screening, a robust active aeration system followed by a clarifier, or membrane barrier to separate the treated effluent from the biological process. Additional key considerations include proper sizing and material selection of the treatment tanks to provide required biological retention time, surge capacity and sludge storage capability. The Bio-Microbics BioBarrier® HSMBR® winery wastewater treatment system takes the complexity out of treating winery wastewater with its simple, awardwinning design and fully certified treatment process. Utilizing superior aeration capabilities in conjunction with durable flat sheet membrane technology, the modular and scalable design provides flexibility to wineries, ensuring optimum treatment throughout the year and lower operating costs. These proprietary units assure all effluent passes through the membrane making it virtually impossible to bypass the treatment process along with providing microfiltration and ultrafiltration resulting in consistent high quality effluent ready for water reuse. Introduced to the Northern California wine region of Napa/Sonoma County in 2013, the BioBarrier HSMBR wastewater treatment system's installations have generated tremendous optimism and interest due to its treatment capabilities, ease of installation, and low operating costs. As the Pacific Northwest Wine Region continues to address winery wastewater concerns, the BioBarrier HSMBR system will surely be a solution to provide vital water reuse opportunities such as quality irrigation water for vineyards, recycled water for dust control, processing area wash-down water, or just highly treated effluent for disposal where untreated or poorly treated winery wastewater threatens vital habitats or groundwater resources. Author Bio: Sheldon Sapoznik, REHS is the Owner of Wine to Water Sales Group. With his 20 years' experience in winery wastewater treatment as a Registered Environmental Health Specialist for Napa County, California, Mr. Sapoznik left the public section to help promote and expand the use of Membrane BioReactor technology for winery wastewater filtration. E: sheldon.sapoznik@gmall.com web: www.biomicrobicswinery.com ### Client ### **Fay School** ### Description The Fay School is a private day and boarding school for elementary and middle school students in Southborough, Massachusetts. Construction of a 26,500 gallon per day membrane bloreactor wastewater treatment facility was completed in 2009. A portion of the treated effluent is reused for tollet flushing in five new dormitory facilities and a new maintenance building. Wastewater is treated by fine screens, a membrane bloreactor and ultraviolet disinfection. As a school facility, The Fay School experiences significant fluctuations in wastewater flow rate over the course of a day and throughout the year. Careful planning was required to ensure that adequate pre-treatment and post-treatment storage capacity was provided and that the treatment capabilities of the equipment would be able to handle such fluctuations. Tighe & Bond designed the treatment facility and assisted the School with the permit application process, which included working closely with the Massachusetts Department of Environmental Protection on the water reuse system permitting, effluent testing and quality requirements. This project was part of a campus expansion that included LEED certification of buildings and use of "green" technologies and construction practices. # Cnvironmental Operating Solutions ### MicroC™ Performance Example ## Brass Castle Estates Satellite image of property Facility Name: Brass Castle Estates Facility Location: Pittstown, New Jersey Facility Description: Subdivision of residential properties Flow: Average flow* = 12,963 GPD. Design flow = 22,000 GPD Denitrification technology: Zenon Zeeweed® 500 Membrane Bioreactor (MBR) with anoxic compartment for denitrification Previous carbon source: Sucrose solution** Date MicroCTM started: December 11, 2004 Operations & Maintenance firm: Applied Water Management Operator - Roger Parr Discharge permit: NJ DEP Permit Number NJ0068829 Permit limits: Flow - 22,000 GPD, pH - report Total Nitrogen - 10mg/L, Volatile Organics - report Fecal Coliform - 200 col/100ml MicroC[™] performance narrative: Plant switched from sucrose solution to MicroC[™] in December of 2004 and demonstrated consistent performance in terms of nitrate removal vs. prior carbon source. About one third of the volume of MicroC[™] was required to achieve comparable effluent nitrate concentrations. Gallons of external carbon required per day Typical home served by wastewater treatment facility Wastewater treatment plant building For more information, contact: Environmental Operating Solutions, Inc. (508) 495-3300 ~ www.eosenvironmental.com ~ info@eosenvironmental.com ^{*} Average GPD from Oct. '04 to Sept. '05 ^{**} Mixture of four pounds of table sugar per gallon of water May-Sept. '04 Sucrose usage low due to airbound pump/sucrose fermentation. PHS* used, but usage data not available. ### MicroC™ Performance Example (continued) ### Brass Castle Estates | | Brass Cas | stle Estat | es | | | | | |---|-----------|------------|-----------------------|------|------------|------------|----------------| | | | Flow | Carbon | | | | Max. Effluent | | | | GPD | Source | GPD | NO3 (mg/L) | NH4 (mg/L) | NO3+NH4 (mg/L) | | | Jan-04 | | Sucrose | 10.2 | 3.0 | 0.1 | 3.3 | | | Feb-04 | 17,042 | Sucrose | 10.9 | 2.8 | 0.1 | 3.6 | | | Mar-04 | 16,933 | Sucrose | 10.2 | 3.4 | 0.1 | 3.2 | | | Арг-04 | 17,934 | Sucrose | 10.1 | 3.5 | 0.2 | 4.3 | | (| May-04 | 15,506 | Sucrose | 9.5 | 4.1 | 0.2 | 6.7 | | П | Jun-04 | 12,578 | Sucrose | 6.0 | 4.3 | 0.2 | 6.9 | | l | Jul-04 | | Sucrose | 5.3 | 8.9 | 0.2 | 9.0 | | П | Aug-04 | 12,702 | Sucrose | 3.9 | 7.9 | 0.3 | 0.7 | | u | Sep-04 | | Sucrose | 4.3 | 8.8 | 0.3 | 7.8 | | | Oct-04 | 12,973 | Sucrose | 9.6 | 4.2 | 0.2 | 2.0 | | | Nov-04 | 13,823 | Sucrose | 10.4 | 4.0 | 0.3 | 6.9 | | | Dec-04 | 13,887 | Transition | 3.5 | 6.4 | 0.3 | 5.3 | | | Jan-05 | 13,791 | MicroC TH | 3.5 | 6.6 | 0.3 | 3.4 | | | Feb-05 | 13,393 | MicroC TH | 3.6 | 3.7 | 0.3 | 9.3 | | ١ | Mar-05 | 10,756 | MicroC ^{TLI} | 3.4 | 3.9 | 0.3 | 4.7 | | ١ | Apr-05 | 13,746 | MicroC ^{TLI} | 3.5 | 4.6 | 0.2 | 5.3 | | ı | May-05 | | MicroCTH | 3.4 | 5.2 | 0.1 | 5.8 | | 1 | Jun-05 | | MicroC TH | 3.5 | 3.3 | 0.2 | 7.2 | | | Jul-05 | | MicroC ^{TII} | 3.4 | 4.0 | 0.2 | 6.8 | | | Aug-05 | | MicroC TH | 3.4 | 3.8 | 0.2 | 5.6
5.4 | | 1 | Sep-05 | 12.247 | MicroC TM | 3.5 | 6.0 | 0.2 | 5.4 | Source data from New Jersey Department of Environmental Protection DMR data and Applied Water Management. * PHS is
a peat humic substance made from highly humified peat ### Satellite image of Brass Castle Estates ### Wastewater treatment process schematic For more information, contact: Environmental Operating Solutions, Inc. (508) 495-3300 ~ www.eosenvironmental.com ~ info@eosenvironmental.com # environmental MicroC™ and MicroC G™ Case Study Operating New Jersey Decentralized MicroC™/MicroC G™ Performance History MicroC™ and MicroC G™ have been used extensively in the New Jersey decentralized wastewater treatment market since 2004. The figure below provides information for several plants on average Total Nitrogen (TN) and flow through August 2007 obtained from the NJPDES online database. The "months" column refers to the number of months that the plant has been using EOS products. MicroC™ and MicroC G™ are ideal carbon sources for decentralized facilities due to safety, handling and cost concerns. Plants are able to achieve their TN goals with EOS products. For more information, contact: Environmental Operating Solutions, Inc. 508-743-8440 ~ www.eosenvironmental.com ~ info@eosenvironmental.com