

## **Truro Planning Board Agenda** Wednesday, October 19, 2022 – 5:00 pm <sup>(0)</sup> 1/2

16 TOWN CLERK

#### **Open Meeting**

This will be a remote public meeting. Citizens can view the meeting on Channel 18 in Truro and on the web on the "Truro TV Channel 18" button under "Helpful Links" on the homepage of the Town of Truro website (www.truro-ma.gov). Click on the green "Watch" button in the upper right corner of the page. Please note that there may be a slight delay (approx. 15-30 seconds) between the meeting and the television broadcast/live stream.

Citizens can join the meeting to listen and provide public comment by entering the meeting link; clicking on the Agenda's highlighted link; clicking on the meeting date in the Event Calendar; or by calling in toll free at 1-877-309-2073 and entering the access code 763-403-773# when prompted. Citizens will be muted upon entering the meeting until the public comment portion of the hearing. If you are joining the meeting while watching the television broadcast/live stream, please lower or mute the volume on your computer or television during public comment so that you may be heard clearly. Citizens may also provide written comment via postal mail or by emailing Liz Sturdy, Planning Department Administrator, at esturdy@truro-ma.gov.

Meeting link: https://meet.goto.com/763403773

#### **Public Comment Period**

The Commonwealth's Open Meeting Law limits any discussion by members of the Board of an issue raised to whether that issue should be placed on a future agenda. Speakers are limited to no more than 5 minutes.

#### 1. Planner Report

2. Chair Report

#### **Board Action/Review (Continued)**

2022-005/PB - Regan McCarthy seeks approval of Form A – Application for Determination that Plan Does Not Require Approval (ANR) pursuant to Section 2.2 of the Town of Truro Rules and Regulations Governing the Subdivision of Land with respect to property at 35A Higgins Hollow Road, Truro MA, Atlas Map 47, Parcel 2, Registry of Deeds title reference: Book 20807, Page 42. [Material in 8/24/2022 and 9/21/2022 packets]

Requested extension of time to November 2, 2022

#### **Board Action/Review**

**2022-006/PB** – Matthew Bramble and Murray Bartlett seek approval of Form A – Application for Determination that Plan Does Not Require Approval (ANR) pursuant to Section 2.2 of the Town of Truro Rules and Regulations Governing the Subdivision of Land with respect to property at 31 and 33 Sylvan Lane, Truro MA, Atlas Map 43, Parcels 74 and 75, Registry of Deeds title reference: Books 33585 / 35191, Pages 120 / 48.

2022-010/SPR - Crown Castle/DISH Wireless, on property located at 344 Route 6 (Atlas Map 39, Parcel 172). Applicant seeks a Special Permit under Section 40.5 of the Truro Zoning Bylaw, and as an Eligible Facilities Request for a minor modification under Section 6409 and the rules of the Federal Communications Commission ("FCC"), to modify an existing tower: adding three (3) antennas, six (6) remote radio units, and one (1) over voltage protection device at the 122' centerline height on the tower, three (3) DC power cables, three (3) fiber trunks and one (1) radio cabinet in the existing fenced compound.

#### **Development of Warrant Articles**

- Updates
  - Street Definition
  - Lot Coverage/Site Clearing
  - Housing
  - Other

#### **Interview of Potential Planning Board Members**

- Confirm date & time
- Potential questions from Planning Board

#### Minutes

- September 7, 2022
- September 28, 2022 Work Session

Work Session: Wednesday, October 26, 2022 at 5:00 pm (Warrant Article) Next Meeting: Wednesday, November 2, 2022 at 5:00 pm

Adjourn

RECEN TOWN CLERK

#### MEMORANDUM

To: Truro Planning Board

From: Barbara Carboni, Town Planner and Land Use Counsel

Date: October 17, 2022

Re: October 19, 2022 meeting

2022 2022-005/PB - Application (Form A) of Regan McCarthy for Determination that Plan Does Not Require Approval (ANR) under the Subdivision Control Law with respect to property known as 35A Higgins Hollow Road, located partly in the Seashore District and partly in the Residential District.

<u>Update</u>: As the Board will remember, the Applicant agreed to an extension of time for Board action on the ANR plan to allow the Applicant time to meet with the Cape Cod National Seashore regarding her rights under the Boundary Line Agreement and Right of Way permit.

Applicant's counsel has advised that discussions with the National Seashore are ongoing and has requested that the Board further consider the application at its meeting on November 2, 2022. The Applicant has agreed to extend the time for Board action through that date.

**2022-010/SPR – Crown Castle/DISH Wireless, on property located at 344 Route 6** (Atlas Map 39, Parcel 172), seeking a special permit<sup>1</sup> under Section 40.5 of the Truro Zoning Bylaw and approval of an Eligible Facilities Request to install certain equipment on the cell tower.

The proposal is to install three antennas, six remote radio units and one "over voltage protection device" at a height of 122 feet on the tower, and three cables, three fiber trunks and one radio cabinet in the existing structure.

The original Structural Evaluation submitted with this application was a single page, which did not include information regarding the Risk Category applied (as there was with the Crown Castle/T-Mobile Structural Analysis Report). In addition, the page was signed by the engineer in July 2021, prior to the revised Structural Analysis recently provided to the Board in conjunction with the T-Mobile application.

The Applicant's representative has requested that the T-Mobile Structural Analysis be added to the record for this (Dish Wireless), application and considered by the Board in its review of the Dish Wireless request. It is possible, but not certain that the Board may use the T-Mobile Structural analysis for this purpose; it is hoped that discussion at the meeting will resolve this question.

<sup>&</sup>lt;sup>1</sup> The application references Site Plan Review, but the relief required is a special permit. A form briefly available online referenced Site Plan Review, but has since been corrected.

#### **2022-006/PB** – Matthew Bramble and Murray Bartlett seek endorsement of an ANR plan with respect to property located at 31 and 33 Sylvan Lane (Atlas Map 43, Parcels 74 and 75)

The Applicant proposes to combine Lot 1 (31 Sylvan Lane, 88,358 square feet) and Lot 8 (33 Sylvan Lane, 31,332 square feet) as shown on the submitted Plan to form Lot 8A (total 119,690 square feet). Both are located in the Residential District; 31 Sylvan is unimproved; 33 Sylvan appears to be improved by a small structure. As requested by the Chair, the Applicant has provided additional information regarding the condition of Sylvan Lane. See email dated October 7, 2022.

The Form A states that an ANR endorsement is warranted where:

"The division of the tract of land shown on the accompanying plan is not a 'subdivision' because it shows a proposed conveyance/other instrument, namely [removing an interior lot line and combining into 1 lot] which adds to/takes a way from/changes the size and shape of, lots in such a manner that no lot affected is left without frontage as required by the Truro Zoning Bylaw under Section 50.1(A), which requires 150 feet."

The resulting single Lot 8A would have over 150 feet of frontage on Sylvan Way, satisfying the above requirement.<sup>2</sup>

As the Board is aware, an ANR endorsement represents the Board's finding that what is proposed is not a "subdivision" as that term is defined in G.L. c. 41. A combination of lots, as proposed here, is one appropriate use of the ANR procedure (subject to the frontage requirement above). There would not appear to be any obstacles to endorsement of the Plan as Approval Not Required.

<sup>&</sup>lt;sup>2</sup> A note on the Plan appropriately notes that the Planning Board's endorsement does not indicate that the lot is buildable or that it meets zoning, health, or general bylaw requirements.

#### **Elizabeth Sturdy**

From: Sent: To: Cc: Subject:

Christopher Senie <csenie@senie-law.com> Thursday, October 13, 2022 10:25 AM Elizabeth Sturdy Barbara Carboni RE: 35A Higgins Hollow Road

Hi Liz,

Thanks. We look forward to being before the board on Nov  $2^{nd}$ 

Best,

Chris

From: Elizabeth Sturdy <<u>ESturdy@truro-ma.gov></u> Sent: Thursday, October 13, 2022 9:43 AM To: Christopher Senie <<u>csenie@senie-law.com></u> Cc: Barbara Carboni <<u>bcarboni@truro-ma.gov></u> Subject: RE: 35A Higgins Hollow Road

Attorney Senie,

To confirm, the matter of 35A Higgins Hollow Road will be continued to the Board's meeting on Wednesday, November 2 at 5:00 pm, and that the timeframe with which the Board has to act on this ANR plan has been extended to that date of November 2, 2022.

Thank you,

Liz

From: Christopher Senie <<u>csenie@senie-law.com></u> Sent: Wednesday, October 12, 2022 3:34 PM To: Elizabeth Sturdy <<u>ESturdy@truro-ma.gov></u>; Barbara Carboni <u><bcarboni@truro-ma.gov></u> Subject: RE: 35A Higgins Hollow Road

Hi Liz and Barbara,

Let's go with November 2<sup>nd</sup>. That gives us more time to work with the Seashore and submit documents one week ahead.

Let me know if that works.

Thanks.

Best,

Chris

From: Elizabeth Sturdy <<u>ESturdy@truro-ma.gov></u> Sent: Wednesday, October 12, 2022 2:18 PM To: Christopher Senie <<u>csenie@senie-law.com></u>; Barbara Carboni <<u>bcarboni@truro-ma.gov></u> Subject: RE: 35A Higgins Hollow Road

#### **Elizabeth Sturdy**

| From:    | Regan McCarthy <regan.mccarthy@songmasters.org></regan.mccarthy@songmasters.org> |
|----------|----------------------------------------------------------------------------------|
| Sent:    | Wednesday, October 5, 2022 5:00 PM                                               |
| То:      | Elizabeth Sturdy                                                                 |
| Cc:      | Christopher Senie                                                                |
| Subject: | Planning Board Remote Meeting/ Packet / October 12                               |

Per your email to Atty Senie today, I am sending two access ways to a video which we tried to screen share this at the Sept 21 meeting and ran into technical difficulties. We promised to make this accessible to the Planning Board. It will be important for the PB to see this. It is tool arge a file for the Town's email to accept, and I can bring a copy over for downloading to the Town's ICloud if you want. Alternately, this can be accessed by the PB either by:

- 1. Send the link [below] to PB members, which will remain available through Oct 21, to this video for viewing and/or downloading.
- 2. Give the link to the Truro Organizer to show at the October 12th meeting.

Download Attachment

Available until Oct 21, 2022 Full link is here https://www.icloud.com/attachment/?u=https%3A%2F%2Fcvws.icloudcontent.com%2FB%2FATQ23H2wlbsSpUzgDrWDXRVrmMlPAacnm7dzLaQhQBUi0g9VEaYLuvGl%2F%24%7Bf%7D%3Fo %3DAhH62yj2qKplAO\_pNGOtqmNoDOwATjlHEycpVl0o6aD-%26v%3D1%26x%3D3%26a%3DCAogECHH-HTIWzhXZAcMND2Qze9vyKITfLP2NJonkKlSOb4SdhCP55aFtjAYj\_eR2b8wlgEAKgkC6AMA\_yOvpwFSBGuYyU9aBAu68Yh qJWlsxWHx7ifuTJmof\_lydvglYxOX3qGTMbrUZSwGx0HCEDLG3LpyJXmvfol\_ISo6cbopNfTEU1iNR0nZEOWxyc8zrTAo1GE wZd0YMyM%26e%3D1666365815%26fl%3D%26r%3D7BAE86B1-1F76-4986-83CB-01FA5E0F6A62-1%26k%3D%24%7Buk%7D%26ckc%3Dcom.apple.largeattachment%26ckz%3D2B9365A1-4E65-4B6C-8838-260FA9B1C77A%26p%3D57%26s%3DzLBfd5OIRJOY8jbD0bya3QiyRfl&uk=Hlvd\_UQ5MBTKCuy5R00xog&f=IMG\_1904. MOV&sz=130836738

Attorney Senie will contact you about handling other items for the Oct 12th meeting.

Thanks and much appreciated - Regan

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.



**Town of Truro Planning Board** 

P.O. Box 2030, Truro, MA 02666

### FORM A

## APPLICATION FOR DETERMINATION THAT PLAN DOES NOT REQUIRE APPROVAL (ANR)

To the Planning Board of the Town of Truro, MA

Date SEPTEMBER 30, 2022

| The undersigned owners of all the | he land described herein submitte    | ed the accompanying plan  | entitled:             |       |
|-----------------------------------|--------------------------------------|---------------------------|-----------------------|-------|
| MATTHEW D. DRAWBLE &              | AS SURDENT FOR<br>MUMPAY T. JATCHETT | and dated Aurost 8        | 2022, reque           | sts a |
| determination and endorsement b   | by said Board that approval by it u  | under the Subdivision Cor | ntrol Law is not requ | ired. |
| Dromontes Locations - 1           |                                      |                           |                       |       |

| Property Location: 31 & 33 Sylvan LANT                    | Map(s) and Parcel(s): MAP 43 PARCELS 74 275    |
|-----------------------------------------------------------|------------------------------------------------|
| Number of Lots Created:                                   | Total Land Area: LoteA= 2:748 tacres           |
| Q                                                         | JULIANNE BRITT                                 |
| The owner's title to said land is derived under deed from | SUSUN H. ARESON ,                              |
| dated Pecamber 1, 2022, and recorded in the Barnstable    | Registry of Deeds Book and Page 35 191 / 48 or |
| Land Court Certificate of Title No                        | registered in Barnstable County                |

The undersigned believes that such approval is not required for the following reasons: (check as appropriate)

The accompanying plan is not a subdivision because the plan does not show a division of land.

The division of the tract of land shown on the accompanying plan is not a subdivision because every lot shown on the plan has frontage of at least such distance as is presently required by the Truro Zoning Bylaw under Section 50.1(A) which requires 150 feet for erection of a building on such lot; and every lot shown on the plan has such frontage on:

a public way or way which the Town Clerk certifies is maintained and used as a public way, namely

a way shown on a plan theretofore approved and endorsed in accordance with the subdivision control law, namely \_\_\_\_\_\_ on \_\_\_\_\_\_ and subject to the following conditions : or

a private way in existence on December 8, 1955, the date when the subdivision control law became effective in the Town of Truro having, in the opinion of the Planning Board, sufficient width, suitable grades, and adequate construction to provide for the needs of vehicular traffic in relation to the proposed use of the land abutting thereon or served thereby, and for the installation of municipal services to serve such land and the buildings erected or to be erected thereon, namely \_\_\_\_\_\_.

The division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely The division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely The division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely The division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely the division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely the division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely the division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely the division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely the division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely the division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely the division of the tract of land shown on the accompanying plan is not a "subdivision" because it shows a proposed conveyance/other instrument, namely the division of the tract of land shown on the accompanying plan is not a "subdivision" because a shown on the division of the d

| The division of the tract of land shown on the accompan<br>buildings, specifically buildings were standing<br>when the subdivision control law went into effect in the<br>standing on each of the lots/said buildings as shown and l<br>existence of such buildings prior to the effective date of th | on the property prior to December 8, 1955, the date<br>Town of Truro and one of such buildings remains<br>ocated on the accompanying plan. Evidence of the |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other reasons or comments: <i>(See M.G. L., c.41, §81-L)</i>                                                                                                                                                                                                                                          |                                                                                                                                                            |
| All other information as required in the Rules and Regulations as part of the application.                                                                                                                                                                                                            | Governing Subdivisions of Land shall be submitted                                                                                                          |
| (Printed Name of Owner)                                                                                                                                                                                                                                                                               | (Signature)                                                                                                                                                |
| (Printed Name of Owner)                                                                                                                                                                                                                                                                               | Mang J. Bartlett                                                                                                                                           |
| (Address of Owner(s))                                                                                                                                                                                                                                                                                 | (Address of Owner(s))                                                                                                                                      |
| (Printed Name of Agent)                                                                                                                                                                                                                                                                               | C. C. Q. 7. (Signature)                                                                                                                                    |
| 41 OFF CEMETERY Kow, TO. Pox 631, Trouwer<br>(Address of Age                                                                                                                                                                                                                                          | trawy, MA 22657<br>ent)                                                                                                                                    |

File twelve (12) copies each of this form and applicable plan(s) with the Town Clerk; and a complete copy, including all plans and attachments, submitted electronically to the Town Planner at <u>planner1@truro-ma.gov</u>

Ms. Anne Greenbaum, Chairman Truro Planning Board Town Hall Truro, Massachusetts

Re: Sylvan Lane Truro, Massachusetts

Dear Ms. Greenbaum:

Pursuant to your recent request regarding the Status of Condition of the Travelled Surface on Sylvan Lane, I have performed a visual inspection this date and am presenting my findings forthwith:

Please be advised of the following:

- 1. The "Sylvia Epstein" Subdivision Plan was Approved by the Truro Planning Board on May 24, 1966.
- 2. The existing Traveled Surface is Pavement in front of 33 Sylvan Lane.
- Sylvan Lane is a long Subdivision Road. It exists of a dense graded crushed stone / gravel & hardening surface from entrance at Whitmanville Road to our Locus.
- 4. There did not appear to be any Drainage Structures in-place.

If I can be of any further assistance to you on this matter, please do not hesitate to contact me.

Respectfully submitted,

William N. Rogers II, PE, PLS

## 2.2 - APPROVAL NOT REQUIRED (ANR) PLAN ENDORSEMENT REVIEW CHECKLIST - Applicant

| No.      | Requirement                                                                                                                                                                                                | Included     | Not<br>Included | Explanation, if needed |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|------------------------|
| 2.2.2 St | ubmission Requirements                                                                                                                                                                                     |              |                 |                        |
|          | son may submit a plan seeking endorsement that the plan does not require approval under the sion Control Law by providing the Board with the following:                                                    |              |                 |                        |
| a.       | A properly executed application for Approval Not Required Endorsement (Form A).                                                                                                                            |              |                 |                        |
| b.       | Ten (10) paper prints of the plan. Said plan shall be prepared in such a manner as to meet the Registry of Deeds and/or Land Court requirements for recording and shall contain the following information: | $\checkmark$ |                 |                        |
| b.1      | The boundaries, area, frontage and dimensions of the lot or lots for which ANR endorsement is sought.                                                                                                      | $\checkmark$ |                 |                        |
| b.2      | The date of the plan, scale, north arrow and assessor's map and parcel number of all land shown on the plan and directly abutting the land shown on the plan.                                              | $\checkmark$ |                 |                        |
| b.3      | The name(s) of the owner(s) of record of the lots shown on the plan and of the applicant, together with the name, address seal and signature of the land surveyor who prepared the plan.                   | $\checkmark$ |                 |                        |
| b.4      | Relevant zoning classification data.                                                                                                                                                                       |              |                 |                        |
| b.5      | A locus plan containing sufficient information to locate the land and showing streets bounding or providing access to the property.                                                                        | $\checkmark$ |                 |                        |
| b.6      | The name(s) of the way(s) on which the lots front, information as to ownership of the way(s) and the physical condition of the way(s) including actual width, surface type and condition.                  | $\checkmark$ |                 |                        |
| b.7      | The location and dimension of any natural features which might affect the use of the frontage for access.                                                                                                  | $\checkmark$ |                 |                        |
| b.8      | The location, including setbacks to all lot lines, of all buildings and other structures on the proposed ANR lots shown on the plan.                                                                       | $\checkmark$ |                 |                        |
| b.9      | The location of any wetland on the land shown on the plan or within one hundred (100) feet of its boundaries.                                                                                              | $\checkmark$ |                 |                        |
| b.10     | The location of all bounds and easements on the proposed ANR lots shown on the plan.                                                                                                                       |              |                 |                        |

## 2.2 - APPROVAL NOT REQUIRED (ANR) PLAN ENDORSEMENT REVIEW CHECKLIST - Applicant

| Address: 3433 Sylvan Long, Tromo Applicant Name: ().00.76 |                                                                                                                                                                                                                                                            |          | Date: September 30,202 |                        |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|------------------------|--|
| No.                                                       | Requirement                                                                                                                                                                                                                                                | Included | Not<br>Included        | Explanation, if needed |  |
|                                                           | The statement "Approval under the Subdivision Control Law Not Required", and sufficient space for the date of the application submittal and the date of endorsement, docket number and the signatures of all Board members.                                |          |                        |                        |  |
| b.12                                                      | The statement "Planning Board endorsement of this plan indicates only that the plan is not a subdivision under MGL, Chapter 41, Section 81-L and does not indicate that a lot is buildable or that it meets Zoning, Health or General Bylaw requirements." |          |                        |                        |  |

NOTE: PLANNING BOARD ENDORSEMENT OF THIS PLAN INDICATES ONLY THAT THE PLAN IS NOT A SUBDIVISION UNDER MGL, CHAPTER 41, SECTION 81-L AND DOES NOT INDICATE THAT A LOT IS BUILDABLE OR THAT IT MEETS ZONING, HEALTH OR GENERAL BYLAW REQUIREMENTS.

I CERTIFY THAT THIS PLAN HAS BEEN PREPARED IN CONFORMITY WITH THE RULES AND REGULATIONS OF THE REGISTERS OF DEEDS OF THE COMMONWEALTH OF MASSACHUSETTS.

AUGUST 8, 2002 Willer? The IT, 75, PLS

APPROVAL UNDER THE SUBDIVISION CONTROL LAW NOT REQUIRED. REF. CHAP. 41 SEC. 81-P, G.L.:

TRURO PLANNING BOARD:

DATE:

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LEGEN  | JL | ):       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D.M.H. | =  | DRAINAG  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M.H.   | =  | MANHOLE  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S.M.H. | =  | SEWER M  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | =  | WATER G  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T.P.   | =  | UTILITY  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U/G    | =  | UNDERGRO |
| and the second se | L.P.   | =  | LIQUID P |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |    |          |

0

C.B. fnc (HELD)

MUL,

>2

'INS

ASSESON

345 \$ 17E PAGE

PARCEL

PATSENNIFER

800





# NOTE: \* 31 SYLVAN LANE ASSESSOR'S MAP 43 PARCEL 75 \* 33 SYLVAN LANE ASSESSOR'S MAP 43 PARCEL 74.

ZONING CLASSIFICATION LOT BA IS LOCATED IN RESIDENTIAL DISTRICT.

| ZONING CLASSIFICATION TAB | LE               |
|---------------------------|------------------|
| ZONING REQUIREMENT        | LOT 8A PROPOSED  |
| LOT SIZE 33,750± SQ. FT.  | 119,690± SQ. FT. |
| MIN. FRONTAGE 150 FT.     | 461.02 FT        |
| FRONT YD. SETBACK 25 FT.  | N.A.             |
| SIDE YD. SETBACK 25 FT.   | N.A.             |
| LOT COVERAGE              | N.A.             |
| WETLAND AREA              | -0-              |
|                           |                  |



PLAN OF LAND IN

TRURO AS SURVEYED FOR

MATTHEW D. BRAMBLE & MURRAY J. BARTLETT

SCALE: 1 IN. = 50 FT.

AUGUST, 2022

WILLIAM N. ROGERS PROFESSIONAL CIVIL ENGINEERS & LAND SURVEYORS 41 OFF CEMETERY ROAD, PROVINCETOWN, MASS. 508.487.1565 / 508.487.5809 FAX



N.P.S. Bnd. 13-3 w/disk fnd. (HELD)

LUP.

NE

Wallins 7. T fors II, PE, PLS August 8,2022



1 Cityplace Dr, Suite 490 Creve Coeur, MO 63141

July 15th, 2022

Barbara Carboni, Town Planner Truro Town Hall 24 Town Hall Road P.O. Box 2030 Truro, MA 02666

RE:

Notice of Application for Site Plan Review for DISH Wireless Telecommunication Colocation Crown Site ID#841273; DISH Site ID# BOSOS00592A 344 Route 6, Truro, MA

Dear Ms. Carboni

Attached is an application for Site Plan Review, for a new wireless collocation on an existing Crown Castle owned lattice tower located at 344 Route 6, Truro.

DISH officially entered the wireless retail space on July 1, 2020. Today, DISH Wireless is the fourthlargest wireless carrier in the United States with 8.9 million subscribers. DISH provides wireless voice and data services in the United States under the Boost Mobile brand and will provide services under its own brand after its network is built. This Application brought forth pertains to DISH's network build.

This collocation of new Transmission Equipment is for a Wireless Communications Facility ("Facility") located at the Site. The installation consists primarily of the following: adding three (3) antennas, six (6) remote radio units, and one (1) over voltage protection device at the 122' centerline height on the tower, three (3) DC power cables, three (3) fiber trunks and one (1) radio cabinet in the existing fenced compound, as depicted in the attached stamped plans.

Please feel free to contact me with any questions, and I look forward to working with you.

Sincerely,

Katie Adams

Katie Adams Crown Castle, Agent for DISH Wireless <u>kadams@nbcllc.com</u> (781) 392-7547

> The Foundation for a Wireless World. CrownCastle.com



4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

#### Crown Castle Letter of Authorization

#### MA - TOWN OF TRURO Planning Department 24 TOWN HALL ROAD TRURO, MA 02666

#### Re: Application for Zoning/Building Permit Crown Castle telecommunications site at: 344 ROUTE 6, NORTH TRURO, MA 02652

NCWPCS MPL 24 - YEAR SITES TOWER HOLDINGS LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the TOWN OF TRURO for the existing wireless communications site described below:

Crown Site ID/Name: Customer Site ID: Site Address: 841273/TRURO BOBOS00592A/MA-CCI-T-841273 344 ROUTE 6, NORTH TRURO, MA 02652

Crown Castle

By:

7/15/2022 Date:

Richard Zajac Site Acquisition Specialist



100 Apollo Drive Suite 303 Chelmsford, MA 01824

Phone: (360) 561-3311 www.crowncastle.com

October 3rd, 2022

Town Planner Truro Town Hall 24 Town Hall Road P.O. Box 2030 Truro, MA 02666

#### \*\*\*\*\*\*\*\*\*NOTICE OF ELIGIBLE FACILITIES REQUEST\*\*\*\*\*\*\*\*\*

RE: Request for Minor Modification to Existing Wireless Facility – Section 6409 Site Address: 344 Route 6, Truro, MA Crown Site ID#841273; DISH Site ID# BOSOS00592A

Planning Board:

On behalf of DISH Wireless L.L.C. ("Dish Wireless" or "Applicant"), Crown Castle USA Inc. ("Crown Castle") is pleased to submit this request to modify the existing wireless facility noted above through the collocation, replacement and/or removal of the Applicant's equipment as an eligible facilities request for a minor modification under Section 6409<sup>1</sup> and the rules of the Federal Communications Commission ("FCC").<sup>2</sup>

Section 6409 mandates that state and local governments must approve any eligible facilities request for the modification of an existing wireless tower or base station that does not substantially change the physical dimensions of such tower or base station. Under Section 6409, to toll the review period, if the reviewing authority determines that the application is incomplete, it must provide written notice to the applicant within 30 days, which clearly and specifically delineates all missing documents or information reasonably related to whether the request meets the federal requirements.<sup>3</sup> Additionally, if a state or local government, fails to issue any approvals required for this request within 60 days, these approvals are deemed granted. The FCC has clarified that the 30-day and 60-day deadlines begins when an applicant: (1) takes the first step required under state or local law; and (2) submits information sufficient to inform the jurisdiction that this modification qualifies under the federal law<sup>4</sup>. Please note that with the submission of this letter and enclosed items, the thirty and sixty-day review periods have started. Based on this filing, the deadline for written notice of incomplete application is November 2<sup>nd</sup>, 2022, and the deadline for issuance of approval is December 2<sup>nd</sup>, 2022.

The proposed scope of work for this project includes:

Collocation of antennas, ancillary equipment and ground equipment as per plans for a new carrier on an existing wireless communication facility.

At the end of this letter is a checklist of the applicable substantial change criteria under Section 6409. Additionally, please find enclosed the following information in support of this request:

<sup>2</sup> Acceleration of Broadband Deployment by Improving Wireless Facility Siting Policies, 29 FCC Rcd. 12865 (2014) (codified at 47 CFR § 1.6100); and Implementation of State & Local Governments' Obligation to Approve Certain Wireless Facility Modification Requests Under Section 6409(a) of the Spectrum Act of 2012, WT Docket No. 19-250 (June 10, 2020).

<sup>3</sup> See 47 CFR § 1.6100 (c)(3). <sup>4</sup> See 2020 Upgrade Order at paragraph 16.

<sup>&</sup>lt;sup>1</sup> Middle Class Tax Relief and Job Creation Act of 2012, Pub. L. No. 112-96, § 6409 (2012) (codified at 47 U.S.C. § 1455).



Phone: (360) 561-3311 www.crowncastle.com

- (1) Application for Special Use Permit;
- (2) Construction Drawings;
- (3) Structural Analysis; and
- (4) Section 6409 Substantial Change Checklist.

As these documents indicate, (i) the modification involves the collocation, removal or replacement of transmission equipment; and (ii) such modification will not substantially change the physical dimensions of such tower or base station. As such, it is an "eligible facilities request" as defined in the FCC's rules to which the 60-day deadline for approval applies. Accordingly, Applicant requests all authorization necessary for this proposed minor modification under Section 6409.

Our goal is to work with you to obtain approvals earlier than the deadline. We will respond promptly to any request for related information you may have in connection with this request. Please let us know how we can work with you to expedite the approval process. We look forward to working with you on this important project, which will improve wireless telecommunication services in your community using collocation on existing infrastructure. If you have any questions, please do not hesitate to contact me.

Regards,

#### Katie Adams

Katie Adams Site Acquisition Specialist Crown Castle Agent for Applicant (781) 392-7547 kadams@nbcllc.com



100 Apollo Drive Suite 303 Chelmsford, MA 01824

#### Section 6409 Substantial Change Checklist Towers Outside of the Public Right of Way

The Federal Communications Commission has determined that a modification substantially changes the physical dimension of a wireless tower or base station under 47 U.S.C. § 1455(a) if it meets one of six enumerated criteria under 47 C.F.R. § 1.6100. Criteria for Towers Outside the Public Rights of Way

| YES/NO | Does the modification increase the height of the tower by more than the greater of:                      |
|--------|----------------------------------------------------------------------------------------------------------|
| NO     | (a) 10%                                                                                                  |
|        | (b) or, the height of an additional antenna array plus separation of up to 20 feet from the top of       |
|        | the nearest existing antenna?                                                                            |
| YES/NO | Does the modification add an appurtenance to the body of the tower that would protrude from the          |
| NO     | edge of the tower more than 20 feet or more than the width of the tower structure at the level of the    |
|        | appurtenance, whichever is greater?                                                                      |
| YES/NO | Does the modification involve the installation of more than the standard number of new equipment         |
| NO     | cabinets for the technology involved or add more than four new equipment cabinets?                       |
| YES/NO | Does the modification entail any excavation or deployment outside the current site by more than 30       |
| NO     | feet in any direction, not including any access or utility easements?                                    |
| YES/NO | Does the modification defeat the concealment elements of the eligible support structure?                 |
| NO     |                                                                                                          |
| YES/NO | Does the modification violate conditions associated with the siting approval with the prior approval the |
| NO     | tower or base station other than as specified in 47 C.F.R. § $1.6100(c)(7)(i) - (iv)$ ?                  |

If all questions in the above section are answered "NO," then the modification does <u>not</u> constitute a substantial change to the existing tower under 47 C.F.R. § 1.6100.



**Town of Truro Planning Board** 

P.O. Box 2030, Truro, MA 02666

## APPLICATION FOR TELECOMMUNICATION STRUCTURES, **BUILDINGS AND APPURTENANCES SITE PLAN REVIEW**

| To the Town Clerk and the Planning Board of the Town of Truro, MA Date <u>7/15/2022</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The undersigned hereby files an application with the Truro Planning Board for the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Site Plan Review pursuant to §40.5 of the Truro Zoning Bylaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1. General Information<br>Description of Property and Proposed ProjectDISH Wireless collocation on an existing Lattice Tower located at<br>344 Route 6. DISH to install 3 panel antennas and ancillary equipment on the existing tower, with a 5'x7' pad for                                                                                                                                                                                                                                                                                                                   |
| equipment cabinet on the ground, within the existing compound, as per plans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Property Address <u>344 Route 6, Truro</u> Map(s) and Parcel(s) <u>39-172-A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Registry of Deeds title reference: Book, Page, or Certificate of Title         Number and Land Ct. Lot # and Plan #                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Applicant's Name Katie Adams on behalf of Crown Castle (Written Permission attached)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Applicant's Legal Mailing Address100 Apollo Drive, Suite 303, Chelmsford MA 01824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Applicant's Phone(s), Fax and Email 781-392-7547 kadams@nbcllc.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Applicant is one of the following: (please check appropriate box)       *Written Permission of the owner is required for submittal of this application.         Owner       Prospective Buyer*       Other*                                                                                                                                                                                                                                                                                                                                                                    |
| Owner's Name and Address Crown Castle 4545 E. River Rd. Suite 320, West Henrietta, NY 14586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Representative's Name and Address Richard Zajac 4545 E. River Rd. Suite 320, West Henrietta, NY 14586                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Representative's Phone(s), Fax and Email <u>585-445-5896</u> Richard.Zajac@crowncastle.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2. Waiver(s) Request – The Planning Board may, upon the request of the applicant, pursuant to §70.3.E, waive requirements of §40.5, provided that in the opinion of the Planning Board such a waiver would not be detrimental to the public interest, cause the Town any expense, or be inconsistent with the intent and purpose of this Bylaw. A request for a waiver by the applicant shall be accompanied by a reasonable explanation as to why the waiver is being requested. If multiple waivers are requested, the applicant shall explain why each waiver is requested. |
| • The applicant is <i>advised</i> to consult with the Building Commissioner, Planning Department, Conservation Department, and/or Health Department prior to submitting this application.                                                                                                                                                                                                                                                                                                                                                                                      |
| Signature(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Katie Adams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Applicant(s)/Representative Printed Name(s) Owner(s) Printed Name(s) or written permission Katie Adams                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Applicant(s)/Representative Signature(s)Owner(s) Signature(s) or written permission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Your signature on this application authorizes the Members of the Planning Board and town staff to visit and enter upon the subject property.

| Addre  | Address: 344 Route 6 Applicant Name: Katie Adams c/o Crown Castle Date: 7/15/2022.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                 |                        |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------|------------------------|--|
| No.    | Io. Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Not<br>Included | Explanation, if needed |  |
| B. Req | uirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                 |                        |  |
| 1      | All building permits for a communications structure, building or appurtenance shall require a special permit from the Planning Board.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                 | seeking SP             |  |
| 2      | The minimum distance from the perimeter of the communications structure to any property line shall be the height of the structure including any antennas or appurtenances, plus ten (10) feet. The minimum distance from any guy wire, anchor or brace to any property line shall be the length of the guy wire or brace plus ten (10) feet. The setbacks for a communications building shall comply with the setback requirements of the zoning district.                                                                                                                                                                                                                                                                                                                                                                                           | x |                 |                        |  |
| 3      | The communications structure, building or appurtenance shall be installed, maintained and operated in accordance with all applicable federal, state, county and local codes, standards and regulations and shall be designed to withstand sustained winds and gusts of a category 5 hurricane. If Federal Aviation Administration (FAA) or Federal Communications Commission (FCC) regulations are changed, then the owner or operator shall bring the structure, building and appurtenances into compliance with the new regulations within six (6) months of the effective date of such regulations or earlier if a more stringent compliance schedule is included in the regulation. Failure to comply with any new regulations shall be grounds for the removal of non-complying structures, buildings and appurtenances at the owner's expense. | x |                 |                        |  |
| 4      | The height of the communications structure (tower) shall be no greater than one hundred and fifty (150 feet) above ground level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                 | n/a - tower existing   |  |
| 5      | Communication antennas shall be located on pre-existing structures unless the applicant demonstrates that there are no feasible pre-existing structures. The installation shall preserve the character of such pre-existing structures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х |                 |                        |  |
| 6      | If the applicant has demonstrated that there are no feasible pre-existing structures to support<br>antennas and appurtenances for the intended use, then any communications structure, building<br>or appurtenance may be sited on public land.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                 | n/a                    |  |

| Addre | Address: 344 Route 6 Applicant Name: Katie Adams c/o Crown Castle Date: 7/15/2022                                                                                                                                                                                                                                                                                                                                                                                              |   |                 |                        |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------|------------------------|--|
| No.   | No. Requirement In                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Not<br>Included | Explanation, if needed |  |
| 7     | To the extent lawful and feasible, all service providers shall co-locate on a single tower.<br>Towers shall be designed to structurally accommodate the maximum number of foreseeable<br>users (within a ten-year period) technically practicable. The applicant is required to document<br>all co-location tenants and provide a tower design indicating types and location of all facilities.                                                                                | x |                 |                        |  |
| 8     | New facilities or structures shall be considered only upon a finding by the Planning Board that existing or approved facilities or structures cannot accommodate the wireless communications equipment planned for the proposed tower.                                                                                                                                                                                                                                         |   |                 | n/a                    |  |
| 9     | The installation of a communications structure, building or appurtenance shall be designed to minimize visual impact; the maximum amount of natural vegetation shall be preserved; details of construction and finish shall blend with the surroundings; additional vegetative screening shall be employed where practical and particularly to screen abutting residential property whether developed or not. A detailed landscape plan will be required with the application. | x |                 |                        |  |
| 10    | Location and siting of facilities and structures shall be consistent with any regional location and siting criteria established by the Cape Cod Commission.                                                                                                                                                                                                                                                                                                                    |   |                 | n/a                    |  |
| 11    | Under normal operating conditions, noise emanating from the communications structure,<br>building or appurtenance shall not be greater at the boundary of the lot on which it is sited than<br>would otherwise exist in the absence of these facilities.                                                                                                                                                                                                                       | x |                 |                        |  |
| 12    | No hazardous waste shall be discharged on the site. Any storage of fuel shall be in compliance with the Board of Health regulations. Documentation shall be provided for the contents of all communications buildings and/or cabinets.                                                                                                                                                                                                                                         |   |                 | n/a                    |  |
| 13    | All run-off of storm water from communications structures, buildings, and appurtenances, driveways and parking areas shall be contained on site; the amount of impervious surface on the site shall be minimized.                                                                                                                                                                                                                                                              | x |                 |                        |  |
| 14    | Lighting, when required and permitted by the FAA or the Planning Board, shall be directed inward so as not to project onto surrounding properties.                                                                                                                                                                                                                                                                                                                             |   |                 | n/a                    |  |

| Addres | 344 Route 6 Applicant Name: Katie Adams c/o Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | own Castle | e Dat           |                        |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|------------------------|--|
| No.    | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Included   | Not<br>Included | Explanation, if needed |  |
| 15     | All structures, buildings or appurtenances must be secured to control access. Fencing materials shall be consistent with the character of abutting properties, with a locked gate and proper warning signals. A sign must be displayed indicating the name of the owner(s) and a 24 hour contact number. Only signs limited to safety will be allowed. Fencing is not required for antennas or other appurtenances mounted on a pre-existing structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 | n/a                    |  |
| 16     | As a condition of approval of the application the applicant shall agree, by execution of a covenant, to remove within six months any communications structure and building which has not operated for four consecutive months unless the cause is major damage which prohibits operation. In the event that major damage has rendered the facility inoperative, repair or removal of the facility shall begin within six months and be completed within an additional six months. Failure to comply with the conditions of the covenant shall be grounds for the removal of structures, buildings and appurtenances. Complete restoration of the site shall be at the owner(s) expense, secured by a bond from a recognized financial institution. The covenant shall include, also at the owner(s) expense, provision for liability insurance for any damage to any abutting property whether developed or not. | x          |                 |                        |  |
| 17     | At least forty-five (45) days before submitting an application for a special permit for the installation of a communications structure, building or appurtenance the applicant shall consult with the Planning Board. The purpose of the consultation is to facilitate the permitting process by the exchange of information between the applicant and the Planning Board, and for the applicant to obtain a detailed description of the information and documentation required, in writing, by the Planning Board, in order to clarify and resolve concerns of the Board and minimize potential problems with the application.                                                                                                                                                                                                                                                                                  | x          |                 |                        |  |
| 18     | The Planning Board shall hold a public hearing within sixty-five (65) days of the filing of an application and shall issue a decision within ninety (90) days following the date of the public hearing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 |                        |  |
| 19     | The applicant shall submit the following written information to the Planning Board:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |                        |  |

| Addres | s: 344 Route 6 Applicant Name: Katie Adams c/o C                                                                                                                                                                                                                                                                                                                                                                                   | rown Cast | leDat           | <b></b>                |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|------------------------|--|
| No.    | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                        | Included  | Not<br>Included | Explanation, if needed |  |
| 19.a.  | A survey of all sites for the installation of communications structures, buildings or<br>appurtenances which are feasible for providing the intended services. The survey shall<br>include a rationale for the selection of a prime and at least one alternative site. All sites in<br>Truro shall be located on the appropriate sheet(s) of the Truro Assessor's Atlas;                                                           |           |                 | n/a                    |  |
| 19.b.  | A survey of all pre-existing structures which are capable of supporting the equipment necessary to provide the intended service and a technical report which demonstrates why any such structure cannot be used by the applicant;                                                                                                                                                                                                  |           |                 | n/a                    |  |
| 19.c.  | The radiation pattern of all proposed antennas showing the frequency and intensity of radiation at ground level and at 30 feet above ground level. At the expense of the applicant, Electro Magnetic Field (EMF) readings shall be provided to the Board of Health yearly and immediately after any addition to the facility;                                                                                                      | x         |                 |                        |  |
| 19.d.  | The sound level in decibels at ground level, at 30 feet above ground level and at the top of the facility and 10, 50, 100 and 500 feet from the communications structure, building or appurtenances for wind velocities between calm and 100 miles per hour with all equipment operating at normal levels, including before condition measured, after condition prediction and cumulative condition (with co-location) prediction; |           |                 | n/a                    |  |
| 19.e.  | A delineation of the Assessor's Atlas of all areas in Truro which will not be served by the proposed installation for the prime and an alternative site;                                                                                                                                                                                                                                                                           |           |                 | n/a                    |  |
| 19.f.  | A statement of the services to be supported by the proposed communications structure, building or appurtenance;                                                                                                                                                                                                                                                                                                                    | х         |                 |                        |  |
| 19.g.  | Plans of special design features and materials, including landscaping, to minimize the visual impact of proposed communications structures, buildings and appurtenances. Site plans, elevations and fall zone should be included;                                                                                                                                                                                                  |           |                 | n/a                    |  |
| 19.h.  | A certification that the applicant has complied with all federal (including FAA), state and regional requirements to provide the proposed service and demonstration of compliance with the FCC guidelines for EMF's under National Environmental Policy Act (NEPA), including copies of the FCC Form 600, plus Environmental Assessment/Environmental Impact Statements as applicable;                                             | x         |                 |                        |  |

| Addres | Address: 344 Route 6 Applicant Name: Katie Adams c/o Crown Castle Date: 7/15/2022.                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                 |                        |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------------------|--|
| No.    | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Included | Not<br>Included | Explanation, if needed |  |
| 19.i.  | Within thirty (30) days after the application filing, the applicant shall arrange to fly a three-<br>foot-diameter balloon at the primary and an alternate site at the maximum height of the<br>proposed installation. The date and location of the flights shall be advertised at least 14 days,<br>but not more than 21 days before the flights, in a newspaper with a general circulation in<br>Truro. Photos shall be provided from all strategic viewing points, per agreement with the<br>Planning Board prior to flight. |          |                 | n/a                    |  |
| 20     | If a communications structure, building or appurtenance is to be installed on a pre-existing private structure or on land or a structure owned, prior to the effective date of the bylaw, by the Commonwealth of Massachusetts, or on land or a structure owned by the Town of Truro, the applicant shall submit the following written information to the Planning Board:                                                                                                                                                       |          |                 |                        |  |
| 20.a.  | A draft contract, including requirements for removal of all structures and for complete site restoration in the case of discontinued use, between the applicant and the owner (if different from the applicant).                                                                                                                                                                                                                                                                                                                |          |                 |                        |  |
| 20.b.  | A description of the proposed facility at the proposed prime and alternate sites including:                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                 | n/a                    |  |
|        | i) Height of the facility and its associated equipment and antennas;                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                 |                        |  |
|        | ii) Access roads and power supplies;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                 |                        |  |
|        | iii) Type, size and number of transmitters;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                 |                        |  |
|        | iv) A list of all fuels to be used on the site and a detailed description of how each shall be contained.                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                 |                        |  |
| 20.c.  | A site plan (scale not less than 1 inch=40 feet), showing the proposed facility, fall zones, existing and proposed contour elevations, 100-year flood zones, water resources, Zones of Contribution, waterways, wetlands and all associated equipment and structures on the site, including elevations of all equipment and structures with sufficient detail to delineate the external finish of all structures and equipment; and                                                                                             |          |                 |                        |  |
| 20.d.  | A landscape plan showing the proposed site before and after development, including topography and screening proposed to protect abutters.                                                                                                                                                                                                                                                                                                                                                                                       |          |                 |                        |  |
| 21     | For all applications other than those set forth in § 40.5.B.20 above, the applicant shall submit the following written information to the Planning Board:                                                                                                                                                                                                                                                                                                                                                                       |          |                 |                        |  |

| No.   | Requirement                                                                                                                                                                                                                                                                                                                  | Included | Not<br>Included | Explanation, if needed |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------------------|--|
| 21.a. | A statement of the purpose for which the application is made.                                                                                                                                                                                                                                                                | Х        |                 |                        |  |
| 21.b. | The exact legal name of each person seeking a special permit and the address and telephone number or principal place of business of each such person.                                                                                                                                                                        | х        |                 |                        |  |
| 21.c. | The name, title, address and telephone number of the attorney or other person to whom correspondence or communications in regard to the application are to be addressed. Notice, orders, and other papers may be served upon the person so named, and such service shall be deemed to be service upon the applicant;         | x        |                 |                        |  |
| 21.d. | A statement of the need for the proposed facility with as much specific information as is<br>practicable to demonstrate the need, including description of the proposed system and how<br>the proposed facility would eliminate or alleviate any existing deficiency or limitation,<br>including all co-location facilities; |          |                 | n/a                    |  |
| 21.e. | A statement of the benefits expected from the proposed facility with as much information as is practicable;                                                                                                                                                                                                                  |          |                 | n/a                    |  |
| 21.f. | A description of the proposed facility at the proposed prime and alternate sites including:                                                                                                                                                                                                                                  |          |                 | n/a                    |  |
|       | i) Height of the facility and its associated equipment and antennas;                                                                                                                                                                                                                                                         |          |                 |                        |  |
|       | ii) Access roads and power supplies;                                                                                                                                                                                                                                                                                         |          |                 |                        |  |
|       | iii) Special design features and materials, including landscape plans;                                                                                                                                                                                                                                                       |          |                 |                        |  |
|       | <ul> <li>iv) Type, size and number of transmitters and receivers, as well as the signal<br/>frequency, power output, and power density at the tower base, site boundary,<br/>and building where people might be exposed to the maximum power densities<br/>from the facility;</li> </ul>                                     |          |                 |                        |  |
|       | <ul> <li>v) A map showing any fixed facilities with which the proposed facility would<br/>interact;</li> </ul>                                                                                                                                                                                                               |          |                 |                        |  |
|       | <ul> <li>vi) The coverage signal strength, and integration of the proposed facility with any<br/>adjacent fixed facility, to be accompanied by a network plan showing interfaces<br/>with any adjacent service areas;</li> </ul>                                                                                             |          |                 |                        |  |
|       | vii) A forecast of when maximum capability would be reached for the proposed facility and for facilities that would be integrated with the proposed facility;                                                                                                                                                                |          |                 |                        |  |
|       | viii) Documentation of contents of communications buildings and/or cabinets.                                                                                                                                                                                                                                                 |          |                 |                        |  |

| No.   | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                | Included | Not<br>Included | Explanation, if needed |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------------------|
| 21.g. | A description of the proposed prime and alternative site, including:                                                                                                                                                                                                                                                                                                                                                                                       |          |                 | N/a                    |
|       | <ul> <li>The most recent U.S.G.S. topographic quadrangle map (scale 1 inch = 2,000 feet) marked to show the site of the facility and any significant changes within a one-mile-radius of the site;</li> </ul>                                                                                                                                                                                                                                              |          |                 |                        |
|       | <ul> <li>ii) A map (scale not less than 1 inch = 200 feet) of the lot or tract on which the facility is proposed to be located, showing the acreage and dimensions of such site, the name and location of adjacent public and private roads or the nearest public road, and the names of abutting owners and portions of their lands abutting the site;</li> </ul>                                                                                         |          |                 |                        |
|       | <ul> <li>iii) A site plan (scale not less than 1 inch = 40 feet), showing the proposed facility, fall zones, existing and proposed contour elevations, 100-year flood zones, water resources, Zones of Contribution, waterways, wetlands and all associated equipment and structures on the site, including elevations of all equipment and structures with sufficient detail to delineate the external finish of all structures and equipment;</li> </ul> |          |                 |                        |
|       | <ul> <li>iv) Where relevant, a terrain profile showing the proposed facility and access road<br/>and existing and proposed grades; and</li> </ul>                                                                                                                                                                                                                                                                                                          |          |                 |                        |
|       | <ul> <li>v) The most recent aerial photograph (scale not less than 1 inch = 1,000 feet)<br/>showing the proposed site, access roads and all abutting properties.</li> </ul>                                                                                                                                                                                                                                                                                |          |                 | N//                    |
| 21.h. | A statement explaining mitigation measures for the proposed facility including:                                                                                                                                                                                                                                                                                                                                                                            |          |                 | N/a                    |
|       | <ul> <li>i) Construction techniques designed specifically to minimize adverse effects on<br/>natural areas and sensitive areas;</li> </ul>                                                                                                                                                                                                                                                                                                                 |          |                 |                        |
|       | <ul> <li>Special design features made specifically to avoid or minimize adverse effects<br/>on natural areas and sensitive areas;</li> </ul>                                                                                                                                                                                                                                                                                                               |          |                 |                        |
|       | <li>iii) Establishment of vegetation proposed near residential, recreation, and scenic areas;</li>                                                                                                                                                                                                                                                                                                                                                         |          |                 |                        |
|       | <ul> <li>iv) Special design features made specifically so that the proposed structures,<br/>buildings and appurtenances shall blend with pre-existing structures and<br/>buildings;</li> </ul>                                                                                                                                                                                                                                                             |          |                 |                        |
|       | v) Methods for preservation of vegetation for wildlife habitat and screening;                                                                                                                                                                                                                                                                                                                                                                              |          | 1               |                        |

| Addres | s: <u>344 Route 6</u> Applicant Name: <u>Katie Adams c</u>                                                                                                                                                                                                                                                                                                                                                                                | c/o Crown | <u>Cast</u> le Dat | ce: <u>7/15/2022</u> . |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|------------------------|
| No.    | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                               | Included  | Not<br>Included    | Explanation, if needed |
|        | vi) A list of all fuels to be used on the site and a detailed description of how each shall be contained; and                                                                                                                                                                                                                                                                                                                             |           |                    |                        |
|        | <ul> <li>vii) A statement describing any hazardous materials or wastes (including quantities)<br/>to be used or generated on the site.</li> </ul>                                                                                                                                                                                                                                                                                         |           |                    |                        |
| 21.i.  | A description of the existing and planned land uses of the proposed prime and alternative sites and surrounding areas;                                                                                                                                                                                                                                                                                                                    |           |                    |                        |
| 21.j.  | A description of the scenic, natural, historic, and recreational characteristics of the proposed prime and alternative sites and surrounding areas;                                                                                                                                                                                                                                                                                       |           |                    |                        |
| 21.k.  | Sight-line graphs to the proposed prime and alternative sites from visually impacted areas (a site from which the facility can be seen) such as residential developments, recreational areas, and historic sites;                                                                                                                                                                                                                         |           |                    |                        |
| 21.1.  | A list describing the type and height of all existing and proposed communication structures,<br>buildings and appurtenances within a ten-mile radius within the search area, or within any<br>other area from which use of the proposed prime or alterative structure might be feasible<br>from a location standpoint for purposes of the application;                                                                                    |           |                    |                        |
| 21.m.  | A description of efforts to share existing and proposed structures, or consolidate telecommunications antennas of public and private services onto the proposed facility;                                                                                                                                                                                                                                                                 |           |                    |                        |
| 21.n.  | A description of the technical alternatives and a statement containing justification for the proposed facility;                                                                                                                                                                                                                                                                                                                           |           |                    |                        |
| 21.o.  | A description of rejected sites with a U.S.G.S. topographic quadrangle map (scale 1 inch = 2,000 feet) marked to show the location of rejected sites;                                                                                                                                                                                                                                                                                     |           |                    |                        |
| 21.p.  | A detailed description and justification for the site selected, including a description of siting criteria and the process by which other possible sites were considered and eliminated including but not limited to, environmental effects, cost differential, coverages lost or gained, potential interference with other facilities, and signal loss due to topographical features compared to the proposed prime and alternate sites; |           |                    |                        |
| 21.q.  | A statement describing hazards to human health, if any, with supporting data and references to regulatory standards;                                                                                                                                                                                                                                                                                                                      |           |                    |                        |
| 21.r.  | A statement of the estimated costs for site acquisition and construction of a facility at the prime and alternative sites;                                                                                                                                                                                                                                                                                                                |           |                    |                        |

| Addres | Address: <u>344 Route 6</u> Applicant Name: <u>Katie Adams c/o Crown Castle Date: 7/15/2022</u> .                                                                                                                                                                                                                                                                         |          |                 |                        |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------------------|--|--|--|
| No.    | Requirement                                                                                                                                                                                                                                                                                                                                                               | Included | Not<br>Included | Explanation, if needed |  |  |  |
| 21.s.  | A schedule showing the proposed program of site acquisition, construction, completion, operation and relocation or removal of the existing facilities for the prime and alternative sits;                                                                                                                                                                                 |          |                 |                        |  |  |  |
| 21.t.  | A copy of any filing or application that the applicant has been required to make together with any decision with regard to such filing or application;                                                                                                                                                                                                                    |          |                 |                        |  |  |  |
| 21.u.  | A landscape plan showing the proposed site and location before and after development, including topography screening proposed to protect abutters;                                                                                                                                                                                                                        |          |                 |                        |  |  |  |
| 21.v.  | Plans which show location and siting at a prime and at an alternate site; and                                                                                                                                                                                                                                                                                             |          |                 |                        |  |  |  |
| 21.w.  | A technical report which demonstrates that the maximum height of the installation is the minimum feasible to provide the intended service.                                                                                                                                                                                                                                |          |                 |                        |  |  |  |
| 22     | All written information submitted in accordance with the requirements listed in any previous section of this bylaw shall be certified by an appropriate licensed professional.                                                                                                                                                                                            |          |                 |                        |  |  |  |
| 23     | The Planning Board may also refer applications to the Board of Health, the Zoning Board of Appeals, and the Conservation Commission for review.                                                                                                                                                                                                                           |          |                 |                        |  |  |  |
| 24     | The Planning Board shall not approve any application that does not comply with all the requirements of this bylaw. The Board does, however, have the right to waive any part of this bylaw, when in its opinion, such a waiver would not be detrimental to the public interest, cause the Town any expense, or be inconsistent with the intent and purpose of this bylaw. |          |                 |                        |  |  |  |
| 25     | Any permit issued by the Planning Board for a communications facility shall be valid for the applicant only; it may not be reassigned, leased or sold.                                                                                                                                                                                                                    |          |                 |                        |  |  |  |
| 26     | Municipal and private, non-commercial uses are exempted from this bylaw.                                                                                                                                                                                                                                                                                                  |          |                 |                        |  |  |  |
| 27     | The Planning Board shall act in accordance with the standards and requirements set forth herein and in accordance with the Massachusetts General Laws.                                                                                                                                                                                                                    |          |                 |                        |  |  |  |
| 28     | The invalidity of any section of this bylaw shall not invalidate any other section.                                                                                                                                                                                                                                                                                       |          |                 |                        |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                           |          |                 |                        |  |  |  |

| CONNEL OF TARE                                                           | TOWN OF TRURO<br>Assessors Office<br>Certified Abutters List<br>Request Form                                        | <b>RECEIVED</b><br>JUL 14 2022<br>ASSESSOR'S OFFICE<br>TOWN OF TRURO                  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                                          |                                                                                                                     | DATE:                                                                                 |
| NAME OF APPLICANT: _                                                     | DISH Wireless                                                                                                       |                                                                                       |
| NAME OF AGENT (if any)                                                   | Katie Adams, on behalf of Crown Castle                                                                              |                                                                                       |
| MAILING ADDRESS: 100                                                     | ) Apollo Drive Suite 303 Chelmsford MA 0                                                                            | 1824                                                                                  |
|                                                                          | L 781-392-7547 EMAIL kada                                                                                           |                                                                                       |
| FROTERIT LOCATION:                                                       | (street address)                                                                                                    |                                                                                       |
| PROPERTY IDENTIFICA                                                      | TION NUMBER: MAP 39 PARCEI                                                                                          | <b>EXT.</b> A <i>(if condominium)</i>                                                 |
| ABUTTERS LIST NEEDE<br>(please check <u>all</u> applicable)              | <b>D FOR:</b> (Fee must accompany the application                                                                   | FEE: \$15.00 per checked item unless other arrangements are made)                     |
| Board of Health <sup>5</sup> Cape Cod Commission Conservation Commission | Planning Board (PB)<br><u>X</u> Special Permit <sup>1</sup><br>n <sup>4</sup> Site Plan <sup>2</sup>                | Zoning Board of Appeals (ZBA)<br>Special Permit <sup>1</sup><br>Variance <sup>1</sup> |
| Licensing Type:                                                          | Preliminary Subdivision <sup>3</sup> Definitive Subdivision <sup>3</sup> Accessory Dwelling Unit (ADU) <sup>2</sup> | _                                                                                     |
| Other                                                                    |                                                                                                                     | (Fee: Inquire with Assessors)                                                         |

| R ASSESSORS OFFICE USE ONLY                                                                   |
|-----------------------------------------------------------------------------------------------|
| Date completed: 7/14/2022<br>Date paid: 7/14/2022<br>Date paid: 7/14/2022<br>Cash/Check_Dlife |
|                                                                                               |

<sup>&</sup>lt;sup>1</sup>Abutters, owners of land directly opposite on any public or private street or way, and abutters to the abutters within 300 feet of the property line.

<sup>&</sup>lt;sup>2</sup>Abutters to the subject property, abutters to the abutters, and owners of properties across the street from the subject property.

<sup>&</sup>lt;sup>3</sup>Landowners immediately bordering the proposed subdivision, landowners immediately bordering the immediate abutters, and landowners located across the streets and ways bordering the proposed subdivision. <u>Note</u>: For Definitive Subdivision only, responsibility of applicant to notify abutters and produce evidence as required.

<sup>&</sup>lt;sup>4</sup>All abutters within 300 feet of parcel, except Beach Point between Knowles Heights Road and Provincetown border, in which case it is all abutters within 100 feet. <u>Note</u>: Responsibility of applicant to notify abutters and produce evidence as required.

<sup>&</sup>lt;sup>5</sup>Abutters sharing any boundary or corner in any direction – including land across a street, river or stream. <u>Note</u>: Responsibility of applicant to notify abutters and produce evidence as required.



TRURO ASSESSORS OFFICE PO Box 2012 Truro, MA 02666 Telephone: (508) 214-0921 Fax: (508) 349-5506

Date: July 14, 2022
To: Katie Adams on behalf of Crown Castle, Agent for DISH Wireless
From: Assessors Department
Certified Abutters List: 344 Route 6 (Map 39, Parcel 172)
Planning Board/Special Permit

Attached is a combined list of abutters for the property located at 344Route 6.

The current owner is Town of Truro.

The names and addresses of the abutters are as of July 8, 2022 according to the most recent documents received from the Barnstable County Registry of Deeds.

Certified by:

Olga Farrell Assessing Clerk 344 Route 6 Map 39, Parcel 172 PB/Special Permit

#### TOWN OF TRURO, MA BOARD OF ASSESSORS P.O. BOX 2012, TRURO MA 02666

.

Abutters List Within 300 feet of Parcel 39/172/A



| Key  | Parcel ID  | Owner                                                           | Location     | Mailing Street                                              | Mailing City | ST | ZipCd/Country |
|------|------------|-----------------------------------------------------------------|--------------|-------------------------------------------------------------|--------------|----|---------------|
| 1291 | 39-167-0-R | TRI-S PROPERTIES LLC                                            | 352 RT 6     | PO BOX 1081                                                 | TRURO        | MA | 02666-1081    |
| 1293 | 39-169-0-R | SEAMENS BANK                                                    | 346 RT 6     | PO BOX 74                                                   | NO TRURO     | MA | 02652         |
| 1294 | 39-171-0-R | WESTVIEW COURT REALTY TRUST<br>C/O TRIBUNA JR MICHAEL A         | 7 PARKER DR  | 192 MILTON ST                                               | QUINCY       | MA | 02170         |
| 1295 | 39-172-0-E | TOWN OF TRURO                                                   | 344 RT 6     | PO BOX 2030                                                 | TRURO        | MA | 02666-2030    |
| 1296 | 39-172-A-R | SOUTHWESTERN BELL MOBILE SYSTE<br>D/B/A CINGULAR WRLS-AT&T SVCS | 344 RT 6     | ATTN: TOWER PROPERTY TAX TEAM<br>754 PEACHTREE ST, 16TH FLR | ATLANTA      | GA | 30308         |
| 1324 | 39-203-0-R | COHEN JENNIFER S                                                | 10 PARKER DR | 110 W 96TH ST #11A                                          | NEW YORK     | NY | 10025         |
| 1421 | 39-302-0-R | PRIDEAUX-BRUNE DIANA &<br>MAHONEY ANNE                          | 5 PARKER DR  | 10 MUSEUM WAY, UNIT 1929                                    | CAMBRIDGE    | MA | 02141         |
| 6429 | 39-323-0-E | TOWN OF TRURO                                                   | 340 RT 6     | PO BOX 2030                                                 | TRURO        | MA | 02666-2030    |

7/14/2022 Page

1

TRI-S PROPERTIES LLC PO BOX 1081 TRURO, MA 02666-1081

39-172-0-E

TOWN OF TRURO PO BOX 2030 TRURO, MA 02666-2030

39-302-0-R

PRIDEAUX-BRUNE DIANA & MAHONEY ANNE 10 MUSEUM WAY, UNIT 1929 CAMBRIDGE, MA 02141

TRURO, MA 02666-2030

39-169-0-R

39-172-A-R

39-323-0-E

WESTVIEW COURT REALTY TRUST C/O TRIBUNA JR MICHAEL A 192 MILTON ST QUINCY, MA 02170

39-203-0-R

COHEN JENNIFER S 110 W 96TH ST #11A NEW YORK, NY 10025

TOWN OF TRURO PO BOX 2030

SEAMENS BANK

NO TRURO, MA 02652

ATLANTA, GA 30308

SOUTHWESTERN BELL MOBILE SYSTE D/B/A CINGULAR WRLS-AT&T SVCS

ATTN: TOWER PROPERTY TAX TEAM

754 PEACHTREE ST, 16TH FLR

PO BOX 74

Date: 7/17/2021



Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

| Subject:                  | Structural Evaluation                                                                      |                                                       |
|---------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Carrier Designation:      | <i>DISH Network</i> Co-Locate<br>Site Number:<br>Site Name:                                | BOBOS00592A<br>MA-CCI-T-841273                        |
| Crown Castle Designation: | BU Number:<br>Site Name:<br>JDE Job Number:<br>WO Number:<br>Order Number:                 | 841273<br>TRURO<br>644620<br>1968406<br>552716 Rev. 0 |
| Site Data:                | 344 Route 6, North Truro, B<br>Latitude: 42° 1' 18" Longitu<br>170 Foot – Self Support Tov | de: -70° 4' 30"                                       |

Crown Castle is pleased to submit this "**Structural Evaluation**" to determine the structural integrity of the abovementioned tower. The purpose of this evaluation is to determine the suitability of the tower structure to support the proposed equipment configuration listed in Table 1.

Based on a comparison of loading listed in the previous analysis dated 3/27/2019, the proposed loading change will not have a significant impact on the overall tower stress rating. Therefore, the final proposed equipment configuration listed in Table 1 is structurally **ACCEPTABLE**.

| Mounting<br>Level<br>(ft) | Center Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna<br>Model     | Number<br>of Feed<br>Lines | Feed Line<br>Size (in) |
|---------------------------|----------------------------------|--------------------------|-------------------------|----------------------|----------------------------|------------------------|
|                           |                                  | 1                        | RAYCAP                  | RDIDC-9181-PF-48     |                            |                        |
|                           |                                  | 3                        | FUJITSU                 | TA08025-B604         |                            |                        |
| 122                       | 122                              | 3                        | FUJITSU                 | TA08025-B605         | 1                          | 1-1/2                  |
|                           |                                  | 3                        | JMA WIRELESS            | MX08FRO665-21        |                            |                        |
|                           |                                  | 3                        | MOUNTS                  | Commscope MTC3975083 |                            |                        |

#### **Table 1: Proposed Equipment Configuration**

Respectfully submitted by:

Bradley E. Byrom, P.E., S.E. Senior Project Engineer

BRADLEY E BYROM STRUCTURAL No. 51881

Digitally signed by Bradley E Byrom Date: 2021.07.17 10:29:52 -04'00'



#### Nationwide Programmatic Agreement Co-location Criteria Verification Form

Site Name: TRURO Business Unit Number: 841273 App ID: 552716 Site Address: 344 ROUTE 6 NORTH TRURO, MA 02652 Carrier Name: DISH Wireless L.L.C. Customer Site ID: BOBOS00592A

Tower was built on or before 3/16/01? YES  $\square$  NO  $\square$ 

#### Criteria for Programmatic Agreement Eligibility for Towers Built on or before March 16, 2001

| YES $\Box$ | NO 🗹 | The mounting of the antenna will result in a substantial increase in the size of the tower <sup>1</sup> .                                                                                                                                          |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YES 🗆      | NO 🗹 | The tower has been found by the FCC to have an adverse or potentially<br>adverse effect that has not been resolved through an MOA or other<br>mechanism.                                                                                           |
| YES □      | NO 🗹 | The tower is the subject of a pending environmental review or<br>proceeding before the FCC involving compliance with Section 106 of<br>the NHPA.                                                                                                   |
| YES 🗆      | NO 🗹 | The tower owner has received written or electronic notice from the FCC that the FCC is in receipt of a complaint from a member of the public, a SHPO or the Council that the co-location has an adverse effect on one or more historic properties. |

#### Criteria for Programmatic Agreement Eligibility for Towers Built after March 16, 2001

| YES □         | NO 🗆      | No Section 106 review (SHPO review) or any associated environmental (NEPA) review required by the FCC has been completed for this tower.                                                                                                           |
|---------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YES $\square$ | NO $\Box$ | The mounting of the antenna will result in a substantial increase in the size of the tower. <sup>1</sup>                                                                                                                                           |
| YES □         | NO 🗆      | The tower is the subject of a pending environmental review or proceeding before the FCC involving compliance with Section 106 of the NHPA.                                                                                                         |
| YES 🗆         | NO 🗆      | The tower owner has received written or electronic notice from the FCC that the FCC is in receipt of a complaint from a member of the public, a SHPO or the Council that the co-location has an adverse effect on one or more historic properties. |

If any of the above answers are "YES," consultation with the SHPO is required prior to placement of the antenna on the tower.

Approved By:

Christopher Page

11/11/2021

A COPY OF THIS COMPLETED FORM MUST BE PROVIDED TO THE CARRIER AND TO THE CROWN CASTLE REGULATORY DEPARTMENT.

<sup>&</sup>lt;sup>1</sup> Substantial increase in size of the tower" means: 1) an increase in the tower height of more than 10% or by the height of one antenna array with a separation distance from the nearest existing array not to exceed 20 feet, whichever is greater; 2) the installation of more than 4 new equipment cabinets or more than 1 new equipment building; 3) the addition of an appurtenance that would protrude from the edge of the tower more than 20 feet or more than the width of the tower at the level of the appurtenance, whichever is greater; or 4) the mounting of the antenna would involve excavation more than 30' in any direction outside the current boundaries of the site and any access or utility easements currently related to the site.



**DISH Wireless L.L.C. SITE ID:** 

# **BOBOS00592A**

DISH Wireless L.L.C. SITE ADDRESS:

# **344 ROUTE 6** NORTH TRURO, MA 02652

# MASSACHUSETTS CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES CODE TYPE <u>CODE</u>

BUILDING MA STATE BUILDING CODE, 9TH EDITION (780 CMR)/2015 IBC W/ AMENDMENTS MECHANICAL MA STATE BUILDING CODE, 9TH EDITION (780 CMR)/2015 IMC W/ AMENDMENTS ELECTRICAL MA ELECTRICAL CODE/2020 NEC W/ AMENDMENTS

|           | SHEET INDEX                                       |                                                                                                                |
|-----------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| SHEET NO. | SHEET TITLE                                       |                                                                                                                |
| T-1       | TITLE SHEET                                       |                                                                                                                |
| A-1       | OVERALL AND ENLARGED SITE PLANS                   |                                                                                                                |
| A-2       | ELEVATION, ANTENNA LAYOUT AND SCHEDULE            |                                                                                                                |
| A-3       | EQUIPMENT PLATFORM AND H-FRAME DETAILS            |                                                                                                                |
| A-4       | EQUIPMENT DETAILS                                 |                                                                                                                |
| A-5       | EQUIPMENT DETAILS                                 |                                                                                                                |
| A-6       | EQUIPMENT DETAILS                                 |                                                                                                                |
| E-1       | ELECTRICAL/FIBER ROUTE PLAN AND NOTES             |                                                                                                                |
| E-2       | ELECTRICAL DETAILS                                | the second s |
| E-3       | ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE |                                                                                                                |
| G-1       | GROUNDING PLANS AND NOTES                         |                                                                                                                |
| G-2       | GROUNDING DETAILS                                 |                                                                                                                |
| G-3       | GROUNDING DETAILS                                 |                                                                                                                |
| RF-1      | RF CABLE COLOR CODE                               |                                                                                                                |
| GN-1      | LEGEND AND ABBREVIATIONS                          |                                                                                                                |
| GN-2      | GENERAL NOTES                                     |                                                                                                                |
| GN-3      | GENERAL NOTES                                     | THE FACILITY IS                                                                                                |
| GN-4      | GENERAL NOTES                                     | FOR ROUTINE N<br>DRAINAGE. NO<br>SIGNAGE IS PRO                                                                |
|           |                                                   | 1                                                                                                              |
|           |                                                   | THE JOB SI                                                                                                     |

| THIS IS NOT AN ALL IN<br>APPROVED EQUIVALENT.<br>THE PROJECT GENERAL                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOWER SCOPE OF WOR<br>INSTALL (3) PROPO<br>INSTALL (3) PROPO<br>INSTALL PROPOSED<br>INSTALL (6) PROPO<br>INSTALL (1) PROPO<br>INSTALL (1) PROPO                                                                                                           |
| GROUND SCOPE OF WO<br>INSTALL (1) PROPO<br>INSTALL (1) PROPO |





| SITE INFO                              | RMATION                              |        |
|----------------------------------------|--------------------------------------|--------|
| PROPERTY OWNER:                        | TOWN OF TRURO, MA                    | A      |
| PROPERTY OWNER:<br>ADDRESS:            | 24 TOWN HALL ROAD<br>TRURO, MA 02666 |        |
| TOWER TYPE:                            | SELF SUPPORT                         | Т      |
| TOWER CO SITE ID:<br>TOWER APP NUMBER: |                                      |        |
| COUNTY:                                | BARNSTABLE                           | s      |
| LATITUDE (NAD 83):                     | 42°1′18.00″N<br>42.02166667          |        |
| LONGITUDE (NAD 83):                    | 70° 4' 30.00 W<br>-70.07500000       |        |
| ZONING JURISDICTION:                   | TOWN OF TRURO, MA                    | s      |
| ZONING DISTRICT:                       | R (RESIDENTIAL)                      |        |
| PARCEL NUMBER:                         | 039-000-172-00                       | С<br>М |
| OCCUPANCY GROUP:                       | U                                    | R      |
| CONSTRUCTION TYPE:                     | II—B                                 |        |
| POWER COMPANY:                         | EVERSOURCE                           |        |
| TELEPHONE COMPANY:                     | CROWN CASTLE                         |        |





- . CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
- 2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS
- 3. EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.









| MINIMUM OF 75% OR<br>270 IN ANY DIRECTION<br>GPS UNIT<br>GPS UNIT |          |   | CU12PSM6P4XXX<br>(4 AWG CONDUCTORS)                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|--------------------------------------------------------|
| MINIMUM SKY VIEW REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO SCALE | 2 | <u>CABLES UNLIMITED HYBRID</u><br>MINIMUM BEND RADIUSE |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |   |                                                        |
| NOT USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO SCALE | 5 | <u>NOT USED</u>                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |   |                                                        |
| NOT USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO SCALE | 8 | <u>NOT USED</u>                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |   |                                                        |







| Image: Construction of the system                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                      |            |             |        |                        |              |     |                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|------------|-------------|--------|------------------------|--------------|-----|-------------------------------------------|
| Image of the water of the second of the s               | CARL  | ON EXPANS            | ION FI     | TTING       | S      |                        |              |     |                                           |
| Ex400         Ex400         1/2"         20         4'           Ex400         Ex400         1/2"         5         7'           Ex400         Ex400         5         7'         10         6'           Ex400         Ex400         5'         7'         10         6'           Ex400         Ex400         5'         7'         10'         1'           Ex400         Ex400         5'         1'         1'         1'           Ex400         Ex400         5'         1'         1'         1'           Ex400         State         5'         1'         1'         1'           Ex400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PART# | ADAPTER END<br>PART# |            | CTN<br>QTY. | LENGTH |                        |              |     | TRENCHING I                               |
| EXPS         Exercise         OP         10         •           Exercise         Exercise         1/2         6         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E945D | E945DX               |            | 20          | 4"     |                        |              |     | TRENCH TO ITS ORIG                        |
| Based         Based         1 / / 2         4           Based         Based         1 / / 2         6         4           Based         Based         1 / / 2         6         4           Based         Based         2 / / 2         10         6           Based         Based         1 / / 2         5         1           Based         Based         Based         1 / 2         1           Based         Based         Based         1 / 2         1           WOT         Based         Based         1 / 2         1         1           WOT         Based         Based         1 / 2         1         1           EXPEANSION_JOINT_DETAIL         MO SOLE         1         1         1           EXPANSION_JOINT_DETAIL         MO SOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E945E | E945EX               | 3/4"       | 15          | 4*     |                        | (SEE CHART   | FOR | OR SODDING GRASS                          |
| EB46H         EB45KX         1 1/2 is 4'           B45G         EB45KX         2' is 6'           E545K         E345KX         2' is 6'           E545K         E345KX         2' is 6''           E545K         E345KX         2' is 6''           E545K         E345KX         2''           E545K         E345KX         2''           E345K         E345KX         2''           E345K         E345KX         5''           E345KX         E3''         6'''           E345KX         E3'''         6'''           E345KX         C''         1'''           E345KX         C''         1'''           EXPANSION JOINT DETAIL         NO SOLE         4'''           NOT USED         NO SOLE         4'''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E945F | E945FX               | 1"         | 10          | 4*     |                        | PARI NUMBE   | .R) | REPLACING ASPHALT<br>AREAS TO ITS ORIGIN  |
| BASA       EBASA       2 * 15       a*         BASA       BASA       2 / 2 / 10       a*         BASA       BASA       2 / 2 / 10       a*         BASA       BASA       10       a*         BASA       BASA       2 / 2 / 10       a*         BASA       BASA       10       a*         BASA       BASA       1 / 2 / 10       a*         BASA       BASA       a*       a*         BASA       a*       a*       a*         BASA       a*       a*       a*         COMBRANS       SARA       a*       a*         COMBRANC       A*       b*       b*         COMBANA       BASA       b*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E945G | E945GX               |            | 5           |        |                        |              |     |                                           |
| Basks     Basks     37 10     0     0     BY HE GURBANT     SHARK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E945H | E945HX               |            | 5           |        | ,   <b>,</b>           |              |     | BUT NOT LIMITED TO                        |
| EB43L       E346XL       3*       10       6*         E345XL       E346XL       3 1/2*       5       6*         E345XL       E346XL       5       1       6*         E345XL       E346XL       5       1       6*         E345XL       E346XL       5*       1       6*         E345XL       E346XL       5*       1       6*         E446X       6*       1       9*       10       10*         Da46R       E346XL       6*       1       9*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*       10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E945J | E945JX               |            | 15          |        |                        |              |     | CLASSIFICATION, SLO<br>SHORING, SHALL BE  |
| B480:       B480:       3'       10'       6''       Second                                                            | E945K | E945KX               | 2 1/2"     | 10          |        |                        |              |     | BY THE CURRENT O                          |
| EB45N       Eb45PX       5       0*       Image: constrained and the second and the secon                                                   | E945L | E945LX               |            | 10          |        | ┹──┟──┤                |              |     | SAFETY STANDARDS.                         |
| B44SN       B44SK       4       5       5''       1       8''       1       8''       1       8''       1       8''       1       8''       1       8''       1       8''       1       8''       1       8''       1       8''       1       8''       1       8''       1       8''       1       8''       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>E945M</td> <td>E945MX</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td>3. ALL CONDUITS SHAL<br/>INSTALLED IN COMP</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E945M | E945MX               |            | 5           |        |                        |              |     | 3. ALL CONDUITS SHAL<br>INSTALLED IN COMP |
| Distance         Construction         Construction <td></td> <td>E945NX</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td>THE CURRENT NATIO</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | E945NX               |            | 5           |        |                        |              |     | THE CURRENT NATIO                         |
| Image: State and the active activ |       |                      |            | 1           |        |                        |              |     | REQUIRED BY THE L                         |
| ORDNANCE AND/OR SPECIFIC REQUIREMENT.         EXPANSION JOINT DETAIL       NO SOME       1         NOT_USED       NO SOME       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E945R | E945RX               | 6 <b>"</b> | 1           | 8"     | SLIP JOINT AT METER CE | NTER CONDUIT |     | JURISDICTION, WHICI<br>THE MOST STRINGE   |
| NOT_USED NO SOME 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                      |            |             |        |                        |              |     |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | EXPAN                | ISION      | JOINT       | DETAIL |                        | NO SCALE     | 1   | <u>TYPIC</u>                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                      |            |             |        |                        |              |     |                                           |
| NOT USED NO SCALE 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                      | NOT        | USED        |        |                        | NO SCALE     | 4   |                                           |
| NOT USED NO SCALE 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                      |            |             |        |                        |              |     |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                      | ΝΟΤ        | USED        |        |                        | NO SCALE     | 7   |                                           |





| RVICE ENTRANCE<br>/AC 1PH                                  | 120/<br>OVEF                    | POSED POWER PROTECTIVE CABINET<br>/240V, 1 PH, SERVICE RATED,<br>RALL UL LISTED POWER CENTER, | ]                                            | CHARLES NETWORK CABINET                                  | THE ENGINEER OF RECORD HAS<br>CALCULATIONS AND THE AIC RA<br>EQUIPMENT AND THE ELECTRICA |
|------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------|
| R 200A )-                                                  |                                 | , 65K/10K AIC<br>MAIN BREAKER WITH<br>INTERLOCKED GENERATOR                                   |                                              |                                                          | THE ENGINEER OF RECORD HAS<br>CALCULATIONS AND ALL BRANC<br>(LISTED ON T-1) ARTICLE 210. |
| N≠                                                         |                                 | FEED, 200A 65K AIC                                                                            | (2) PROPOSED<br>0.75" EMT CONDUITS           |                                                          | THE (2) CONDUITS WITH (4) C<br>THE ADJUSTMENT FACTOR OF 8<br>2020 NEC TABLE 310.15(C)(1) |
| PPRESSION<br>OKA SAD/MOV<br>15A                            |                                 | PROPOSED 2 #10, 1 #10 CU GND.                                                                 |                                              |                                                          | #12 FOR<br>#10 FOR<br>#8 FOR                                                             |
| 15A 05<br>SPACE 07                                         |                                 | PROPOSED 2 #10                                                                                |                                              |                                                          | #6 FOR<br>CONDUIT SIZING: AT 40% FILL                                                    |
| SPĂCE 09                                                   | 10                              | PROPOSED 2 #10, 1 #10 CU GND.                                                                 |                                              | FOR RECTIFIER 2                                          | 0.5" CONDUIT - 0.1<br>0.75" CONDUIT - 0.2<br>2.0" CONDUIT - 1.3                          |
| SPĂCE<br>SPĂCE<br>SPĂCE<br>SPĂCE                           | 14                              | PROPOSED 2 #10                                                                                |                                              | → FOR RECTIFIER 3                                        | 3.0" CONDUIT - 2.9<br>CABINET CONVENIENCE OUTLET                                         |
| SPÁCE<br>SPÁCE<br>15<br>SPACE<br>17                        |                                 |                                                                                               | V                                            | → FOR RECTIFIER 4                                        | #10 - 0.0<br>#10 - 0.0                                                                   |
| SPACE<br>SPACE<br>SPACE<br>SPACE                           | 20 SPACE<br>22 SPACE            |                                                                                               | (1) PROPOSED<br>0.5" EMT CONDUIT             |                                                          | TOTAL<br>0.5" EMT CONDUIT IS ADEQUAT<br>INCLUDING GROUND WIRE, AS I                      |
| SPĂCE 23<br>SPĂCE                                          | 24 SPACE                        | PROPOSED 2 #10, 1 #10 CU GND.                                                                 |                                              |                                                          | RECTIFIER CONDUCTORS (2 CO                                                               |
|                                                            |                                 |                                                                                               | <u>j</u>                                     | FOR CONVENIENCE OUTLET                                   |                                                                                          |
| rcuit wiring su<br>E—line diagram.                         | PPLYING RECTIFI<br>CONTRACTOR M | IERS ARE TO BE RATED UL1015, 105<br>IAY SUBSTITUTE UL1015 WIRE FOR TH                         | °C, 600V, AND PVC INS<br>IWN—2 FOR CONVENIEN | GULATED, IN THE SIZES SHOWN<br>CE OUTLET BRANCH CIRCUIT. | 0.75" EMT CONDUIT IS ADEQUA<br>INCLUDING GROUND WIRE, AS I                               |
| <mark>required:</mark><br>P breaker — Sø<br>P breaker — Sø |                                 |                                                                                               |                                              |                                                          | PPC FEED CONDUCTORS (1 CO $3/0 - 0$                                                      |
|                                                            |                                 |                                                                                               |                                              |                                                          | #6 – 0<br>TOTAL                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          | 3.0" SCH 40 PVC CONDUIT IS<br>INCLUDING GROUND WIRE, AS I                                |
| <u> </u>                                                   | PC ONE-I                        | <u>INE DIAGRAM</u>                                                                            |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
|                                                            |                                 |                                                                                               |                                              |                                                          |                                                                                          |
| NO S                                                       | scale 2                         |                                                                                               |                                              | <u>NOT USED</u>                                          |                                                                                          |
|                                                            | •                               |                                                                                               |                                              |                                                          |                                                                                          |

| <u>NOTES</u>                                                                                                                                                                                 |                |              |                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------|
| HAS PERFORMED ALL REQUIRED SHORT CI<br>RATINGS FOR EACH DEVICE IS ADEQUATE<br>ICAL SYSTEM.                                                                                                   |                | ect the      |                                                                                                                                |
| HAS PERFORMED ALL REQUIRED VOLTAGE<br>NCH CIRCUIT AND FEEDERS COMPLY WITH<br>10.19(A)(1) FPN NO. 4.                                                                                          |                | ;            | dish                                                                                                                           |
| CURRENT CARRYING CONDUCTORS EACH,<br>80% PER 2014/17 NEC TABLE 310.15(<br>1) FOR UL1015 WIRE.                                                                                                |                |              | wireless.                                                                                                                      |
| R $15A-20A/1P$ BREAKER: $0.8 \times 30A = 2$<br>R $25A-30A/2P$ BREAKER: $0.8 \times 40A = 3$<br>R $35A-40A/2P$ BREAKER: $0.8 \times 55A = 4$<br>R $45A-60A/2P$ BREAKER: $0.8 \times 75A = 6$ | 32.0A<br>44.0A |              | 5701 SOUTH SANTA FE DRIVE<br>LITTLETON, CO 80120                                                                               |
| L PER NEC CHAPTER 9, TABLE 4, ARTICL<br>0.122 SQ. IN AREA<br>0.213 SQ. IN AREA<br>.316 SQ. IN AREA<br>2.907 SQ. IN AREA                                                                      | E 358.         |              |                                                                                                                                |
| T CONDUCTORS (1 CONDUIT): USING THW                                                                                                                                                          | /N—2, CU.      | •            |                                                                                                                                |
| 0.0211 SQ. IN X 2 = 0.0422 SQ. IN<br>0.0211 SQ. IN X 1 = 0.0211 SQ. IN <g< td=""><td>ROUND</td><td></td><td>HUDSON</td></g<>                                                                 | ROUND          |              | HUDSON                                                                                                                         |
| = 0.0633 SQ. IN                                                                                                                                                                              |                |              | Design Group LLC                                                                                                               |
| ATE TO HANDLE THE TOTAL OF (3) WIRES<br>INDICATED ABOVE.                                                                                                                                     | 5,             |              | 45 BEECHWOOD DRIVE TEL: (978) 557-5553<br>N. ANDOVER, MA 01845 FAX: (978) 336-5586                                             |
| CONDUITS): USING UL1015, CU.                                                                                                                                                                 |                |              |                                                                                                                                |
| 0.0266 SQ. IN X 4 = 0.1064 SQ. IN<br>0.0082 SQ. IN X 1 = 0.0082 SQ. IN <b<br>= 0.1146 SQ. IN</b<br>                                                                                          | ARE GRO        | UND          | DANIEL<br>P.<br>HAMM<br>DONNO                                                                                                  |
| UATE TO HANDLE THE TOTAL OF (5) WIRE<br>INDICATED ABOVE.                                                                                                                                     | ES,            |              | DANIEL                                                                                                                         |
| CONDUIT): USING THWN, CU.                                                                                                                                                                    |                | h            |                                                                                                                                |
| 0.2679 SQ. IN X 3 = 0.8037 SQ. IN<br>0.0507 SQ. IN X 1 = 0.0507 SQ. IN <                                                                                                                     | GROUND         | $\bigwedge$  | No.40720                                                                                                                       |
| = 0.8544 SQ. IN                                                                                                                                                                              |                | $\mathbb{N}$ | SONAL ENGINE                                                                                                                   |
| IS ADEQUATE TO HANDLE THE TOTAL OF (<br>S INDICATED ABOVE.                                                                                                                                   | (4) WIRES      | ,            | S/ONAL ENGINE                                                                                                                  |
|                                                                                                                                                                                              |                |              |                                                                                                                                |
| NO                                                                                                                                                                                           | SCALE          | 11           | IT IS A VIOLATION OF LAW FOR ANY PERSON,<br>UNLESS THEY ARE ACTING UNDER THE DIRECTION<br>OF A LICENSED PROFESSIONAL ENGINEER, |
|                                                                                                                                                                                              |                |              | TO ALTER THIS DOCUMENT.                                                                                                        |
|                                                                                                                                                                                              |                |              | DRAWN BY: CHECKED BY: APPROVED BY:<br>PS SMA DPH                                                                               |
|                                                                                                                                                                                              |                |              | RFDS REV #: 0                                                                                                                  |
|                                                                                                                                                                                              |                |              | PRELIMINARY<br>DOCUMENTS                                                                                                       |
|                                                                                                                                                                                              |                |              | SUBMITTALS                                                                                                                     |
|                                                                                                                                                                                              |                |              | REVDATEDESCRIPTIONA11/15/2021ISSUED FOR REVIEW                                                                                 |
|                                                                                                                                                                                              |                |              | A         11/13/2021         ISSUED FOR REVIEW           B         01/21/2022         ISSUED FOR REVIEW                        |
|                                                                                                                                                                                              |                |              |                                                                                                                                |
|                                                                                                                                                                                              |                |              |                                                                                                                                |
|                                                                                                                                                                                              |                |              | A&E PROJECT NUMBER                                                                                                             |
|                                                                                                                                                                                              |                |              | BOBOS00592A                                                                                                                    |
|                                                                                                                                                                                              |                |              | DISH Wireless L.L.C.                                                                                                           |
|                                                                                                                                                                                              |                |              | PROJECT INFORMATION<br>BOBOS00592A                                                                                             |
|                                                                                                                                                                                              |                |              | CROWN CASTLE BU#841273                                                                                                         |
|                                                                                                                                                                                              |                |              | 344 ROUTE 6<br>NORTH TRURO, MA 02652                                                                                           |
|                                                                                                                                                                                              |                |              | SHEET TITLE                                                                                                                    |
|                                                                                                                                                                                              |                |              | ELECTRICAL ONE-LINE, FAULT<br>CALCS & PANEL SCHEDULE                                                                           |
|                                                                                                                                                                                              |                |              | SHEET NUMBER                                                                                                                   |
|                                                                                                                                                                                              | SCALE          | 3            | E-3                                                                                                                            |
|                                                                                                                                                                                              | JUALE          | J            |                                                                                                                                |



|                                                                               | EXISTING T<br>RING (FIEL                                                                 | OWER GROUND<br>D VERIFY)      |        | EXOTHERMIC CONNECTION     MECHANICAL CONNECTION     GROUND BUS BAR     GROUND BUS BAR     GROUND ROD     GROUND ROD     GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.     CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLIANCE WITH NEC SECTION 250 AND DISH Wirel REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               |                                                                                          |                               |        | 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                               | EXISTING S                                                                               | SST/GUYED TOW                 | ĒR     | <ul> <li>EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIEL<br/>GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPE<br/>OR FOOTING.</li> <li>TOWER GROUND RING: THE GROUND RING SYSTEM SHALL<br/>AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE<br/>BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEE<br/>BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG</li> <li>INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSU<br/>PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOM<br/>WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR G</li> </ul> |
| BOND ICE BRIDGE<br>SUPPORT POSTS TO<br>GROUND RING BOND(s)<br>(TYP ALL POSTS) |                                                                                          |                               |        | D       BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED         PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR         BUILDING.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                               | ΝΟΤΓ                                                                                     | NO SCALE                      | 1      | E <u>GROUND ROD:</u> UL LISTED COPPER CLAD STEEL. MINIMUL<br>RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. G<br>GROUND RING CONDUCTOR.                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                               | NOTE<br>ANTENNAS AND OVP SHOWN<br>REFERENCING TO A SPECIFIC<br>LAYOUT IS FOR REFERENCE F | ARE GENERIC A<br>MANUFACTURER | . THIS | <ul> <li>CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOT COPPER CONDUCTORS. BOND TO GROUND RING WITH (2)</li> <li>HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND BAR: BOND TO THE INTERIOR GROUND INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER</li> </ul>                                                                    |
|                                                                               |                                                                                          |                               |        | <ul> <li>(H) EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED A TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER INSPECTION SLEEVE.</li> <li>(1) TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE (1)</li> </ul>                                                                                                                                                                                                                                                                                                                             |
| PROPOSED #2 AWG STRANDED<br>COPPER GREEN INSULATED (TY                        | P)                                                                                       |                               |        | <ul> <li>FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEW</li> <li>INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND IN OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRINTERIOR GROUND RING.</li> </ul>                                                                                                                                                                                                                                                                                  |
| - FB                                                                          |                                                                                          |                               |        | EENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 BONDED TO THE EXTERIOR GROUND RING SHALL BE BON TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEL GATE POST AND ACROSS GATE OPENINGS.                                                                                                                                                                                                                                                                                                                                                    |
|                                                                               |                                                                                          |                               |        | M <u>EXTERIOR UNIT BONDS:</u> METALLIC OBJECTS, EXTERNAL TO<br>TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLD<br>N <u>ICE BRIDGE SUPPORTS:</u> EACH ICE BRIDGE LEG SHALL BE<br>TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELL<br>GROUND RING.                                                                                                                                                                                                                                                                                      |
|                                                                               |                                                                                          |                               |        | <ul> <li>DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC<br/>OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTER<br/>INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS<br/>CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQU<br/>CONDUCTOR FROM THE DC POWER SYSTEM COMMON RET<br/>REFERENCE GROUND BAR</li> </ul>                                                                                                                                                                                                                          |
| 3                                                                             |                                                                                          |                               |        | P TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICA<br>REFER TO DISH Wireless L.L.C. GROUNDING NOTES.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                               |                                                                                          | NO SCALE                      | 2      | <u>GROUNDING KEY NOTE</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |





| <ol> <li>EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GROUND<br/>BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERMIC<br/>WELD.</li> <li>ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR LARGE<br/>ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WIT<br/>AN ANTI-OXIDANT COMPOUND BEFORE MATING.</li> <li>FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUN<br/>BEFORE MATING.</li> <li>DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CONDUCTO<br/>DOWN TO GROUNDING BUS.</li> <li>NUT &amp; WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOLTED<br/>THE BACK SIDE.</li> <li>ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACTOR.</li> <li>THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS<br/>REQUIRED.</li> <li>ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINERS).</li> </ol> |         |      | S/S NUT<br>S/S LOCK<br>WASHER<br>S/S FLAT<br>WASHER<br>S/S FLAT<br>WASHER<br>S/S BOLT<br>(1 OF 2)<br>1/16" MINIMUM SPACIN                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| TYPICAL GROUNDING NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O SCALE | 1    | <u>TYPI</u>                                                                                                                                    |
| EXTERNAL INSPECTION WINDOW IN BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE CONNECTOR SHRINK CONNECTOR S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT CONNECTOR GROUNDING BAR S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING CONNECTOR CROWN HOLE LUG NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 1 TO | NOTE: MINIMUM<br>TO BE VISIBLE<br>2 HOLE LONG<br>TINNED SOLID<br>LUG (TYP)<br>TIN COATED SC<br>COPPER BUS E<br>CHERRY INSUL/<br>INSTALLED IF F |



|                                                                                                                                     | SHEET TITLE<br>GROUNDING DETAILS                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                     | A&E PROJECT NUMBER<br>BOBOS00592A<br>DISH Wireless L.L.C.<br>PROJECT INFORMATION<br>BOBOS00592A<br>CROWN CASTLE BU#841273<br>344 ROUTE 6<br>NORTH TRURO, MA 02652                                                                                                                                                                                                    |
| PROPOSED HYBRID TO BTS<br>EQUIPMENT VIA TRAY OR ICE<br>BRIDGE (TYP)<br>EXISTING TOWER PIER/ FOOTING<br>EXISTING TOWER PIER/ FOOTING | IT IS A VIOLATION OF LAW FOR ANY PERSON,<br>UNLESS THEY ARE ACTING UNDER THE DIRECTION<br>OF A LICENSED PROFESSIONAL ENGINEER,<br>TO ALTER THIS DOCUMENT.<br>DRAWN BY: CHECKED BY: APPROVED BY:<br>PS SMA DPH<br>RFDS REV #: 0<br>PRELIMINARY<br>DOCUMENTS<br>SUBMITTALS<br>REV DATE DESCRIPTION<br>A 11/15/2021 ISSUED FOR REVIEW<br>B 01/21/2022 ISSUED FOR REVIEW |
| PROPOSED HYBRID TO<br>ANTENNA (TYP)                                                                                                 | <section-header></section-header>                                                                                                                                                                                                                                                                                                                                    |

| HYBRID/DISCREET CABLES                                                               |                                 |                     | 3/4" TAPE W                      | IDTHS             |
|--------------------------------------------------------------------------------------|---------------------------------|---------------------|----------------------------------|-------------------|
|                                                                                      |                                 | ALPHA RRH           |                                  | BETA              |
| LOW-BAND RRH<br>(600 MHz N71 BASEBAND) +                                             | PORT 1 POR<br>+ SLANT – SI      |                     | RT 4 PORT 1 P<br>SLANT + SLANT - | PORT 2<br>SLANT   |
| (850 MHz N26 BAND) +<br>(700 MHz N29 BAND) – OPTIONAL PER MARKET                     |                                 |                     |                                  |                   |
| ADD FREQUENCY COLOR TO SECTOR BAND                                                   | RED RE                          | ED RED R            | ED BLUE                          | BLUE              |
| (CBRS WILL USE YELLOW BAND)                                                          | ORANGE ORA                      | NGE RED R           | ED ORANGE O                      | RANGE             |
|                                                                                      | . WH                            |                     |                                  | WHITE             |
|                                                                                      | (—)```                          | ORANGE ORA          | ANGE (-                          | White<br>-) Port  |
|                                                                                      |                                 | (—) <sup>WF</sup>   | HITE<br>PORT                     |                   |
| MID-BAND RRH                                                                         |                                 |                     |                                  |                   |
| (AWS BANDS N66+N70)                                                                  | RED RE                          | ED RED R            | ED BLUE                          | BLUE              |
| ADD FREQUENCY COLOR TO SECTOR BAND<br>(CBRS WILL USE YELLOW BANDS)                   | PURPLE                          | PLE RED R           | ED PURPLE P                      | PURPLE            |
|                                                                                      | (—)                             |                     | RPLE                             | White<br>-) Port  |
|                                                                                      | (—)                             |                     |                                  | ·) PORT           |
|                                                                                      |                                 | (_) <sup>WF</sup>   | HITE<br>PORT                     |                   |
| HYBRID/DISCREET CABLES                                                               | EXAMPLE 1                       | EXAMPLE 2           | EXAMPLE 3 C/<br>COAX#1 CO        | ANISTER<br>OAX #2 |
| INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS.                     |                                 |                     | (ALPHÃ) (A                       | ALPHÄ)            |
| EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS<br>ALL SECTORS, BOTH LOW-BANDS AND         | RED                             | RED                 | RED                              | RED               |
| MID-BANDS.<br>EXAMPLE 2 - HYBRID, OR DISCREET, SUPPORTS                              | BLUE<br>GREEN                   | BLUE<br>GREEN       |                                  | RED               |
| CBRS ONLY, ALL SECTORS.                                                              |                                 |                     |                                  |                   |
| EXAMPLE 3 — MAIN COAX WITH GROUND<br>MOUNTED RRHs.                                   | ORANGE<br>PURPLE                | YELLOW              |                                  |                   |
|                                                                                      |                                 |                     |                                  |                   |
| FIBER JUMPERS TO RRHs                                                                | LOW BAND RRH                    | MID BAND RRH        | LOW BAND RRH                     | М                 |
| LOW-BAND HHR FIBER CABLES HAVE SECTOR<br>STRIPE ONLY.                                | RED                             | RED                 | BLUE                             |                   |
|                                                                                      | ORANGE                          | PURPLE              | ORANGE                           |                   |
|                                                                                      |                                 |                     |                                  |                   |
| POWER CABLES TO RRHs                                                                 | LOW BAND RRH                    | MID BAND RRH        | LOW BAND RRH                     | Μ                 |
| LOW-BAND RRH POWER CABLES HAVE SECTOR<br>STRIPE ONLY                                 | RED                             | RED                 | BLUE                             |                   |
|                                                                                      |                                 |                     |                                  |                   |
|                                                                                      | ORANGE                          | PURPLE              | ORANGE                           |                   |
| RET MOTORS AT ANTENNAS                                                               | ANTENNA 1 ANTEN<br>MID BAND LOW |                     | ANTENNA 1 AN<br>MID BAND LO      |                   |
| RET CONTROL IS HANDLED BY THE MID-BAND<br>RRH WHEN ONE SET OF RET PORTS EXIST ON     |                                 | N                   | IN                               | IN                |
| ANTENNA.<br>SEPARATE RET CABLES ARE USED WHEN                                        | RED                             | D                   | BLUE                             | BLUE              |
| ANTENNA PORTS PROVIDE INPUTS FOR BOTH<br>LOW AND MID BANDS.                          |                                 |                     |                                  |                   |
|                                                                                      | PURPLE                          | NGE                 | PURPLE                           | DRANGE            |
| MICROWAVE RADIO LINKS                                                                |                                 | IUTH OF 0-120 DEGRI |                                  |                   |
| LINKS WILL HAVE A 1.5–2 INCH WHITE WRAP<br>WITH THE AZIMUTH COLOR OVERLAPPING IN THE | PRIMARY SECON                   |                     | PRIMARY SEC                      |                   |
| MIDDLE.<br>ADD ADDITIONAL SECTOR COLOR BANDS FOR                                     | WHITE                           |                     |                                  | WHITE             |
| EACH ADDITIONAL MW RADIO.<br>MICROWAVE CABLES WILL REQUIRE P-TOUCH                   | REDREWHITEWH                    |                     |                                  | BLUE<br>WHITE     |
| LABELS INSIDE THE CABINET TO IDENTIFY THE<br>LOCAL AND REMOTE SITE ID'S.             | RE                              | D                   |                                  | BLUE              |
|                                                                                      | WH                              | ITE                 |                                  | WHITE             |
|                                                                                      |                                 |                     |                                  |                   |

# **RF CABLE COLOR CODES**



|     | AWS<br>(N66+N70+H-BLOCK) |            |                                                                                                                                |
|-----|--------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|
|     | PURPLE                   |            | dish                                                                                                                           |
|     |                          |            | wireless.                                                                                                                      |
|     | NEGATIVE SLANT PORT      |            | 5701 SOUTH SANTA FE DRIVE                                                                                                      |
|     | ON ANT/RRH               |            | LITTLETON, CO 80120                                                                                                            |
|     | WHITE                    |            |                                                                                                                                |
|     |                          | _          |                                                                                                                                |
| TOR |                          |            |                                                                                                                                |
|     | GAMMA SECTOR             |            |                                                                                                                                |
|     | GREEN                    |            | HUDSON<br>Design Group LLC                                                                                                     |
|     |                          |            | 45 BEECHWOOD DRIVE TEL: (978) 557-5553                                                                                         |
|     |                          | 2          | N. ANDOVER, MA 01845 FAX: (978) 336-5586                                                                                       |
|     | NO SCALE                 | 2          |                                                                                                                                |
|     |                          |            | DANIEL<br>P.<br>HAMM<br>CLVL                                                                                                   |
|     |                          |            | DANIEL                                                                                                                         |
|     |                          | h          |                                                                                                                                |
|     |                          |            | No.40720                                                                                                                       |
|     |                          | $V \cup C$ | SSIONAL ENGINE                                                                                                                 |
|     |                          |            | STONAL EN                                                                                                                      |
|     |                          |            |                                                                                                                                |
|     |                          |            | IT IS A VIOLATION OF LAW FOR ANY PERSON,<br>UNLESS THEY ARE ACTING UNDER THE DIRECTION<br>OF A LICENSED PROFESSIONAL ENGINEER, |
|     |                          |            | TO ALTER THIS DOCUMENT.                                                                                                        |
|     |                          |            | DRAWN BY: CHECKED BY: APPROVED BY:<br>PS SMA DPH                                                                               |
|     |                          |            | RFDS REV #: 0                                                                                                                  |
|     |                          |            | PRELIMINARY                                                                                                                    |
|     |                          |            | DOCUMENTS                                                                                                                      |
|     | NO SCALE                 | 3          | SUBMITTALS                                                                                                                     |
|     |                          |            | REVDATEDESCRIPTIONA11/15/2021ISSUED FOR REVIEW                                                                                 |
|     |                          |            | B 01/21/2022 ISSUED FOR REVIEW                                                                                                 |
|     |                          |            |                                                                                                                                |
|     |                          |            |                                                                                                                                |
|     |                          |            | A&E PROJECT NUMBER                                                                                                             |
|     |                          |            | BOBOS00592A                                                                                                                    |
|     |                          |            | DISH Wireless L.L.C.<br>PROJECT INFORMATION                                                                                    |
|     |                          |            | BOBOS00592A<br>CROWN CASTLE BU#841273                                                                                          |
|     |                          |            | 344 ROUTE 6                                                                                                                    |
|     |                          |            | NORTH TRURO, MA 02652                                                                                                          |
|     |                          |            | SHEET TITLE<br>RF                                                                                                              |
|     |                          |            | CABLE COLOR CODE                                                                                                               |
|     |                          |            | SHEET NUMBER                                                                                                                   |
|     |                          |            | RF-1                                                                                                                           |
|     | NO SCALE                 | 4          |                                                                                                                                |
|     |                          |            |                                                                                                                                |

|                                                                                                                                                                                                                                | AB                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                                                                                                                                | ABV<br>AC           |
| BUSS BAR INSULATOR                                                                                                                                                                                                             | ADDL                |
| CHEMICAL ELECTROLYTIC GROUNDING SYSTEM                                                                                                                                                                                         | AFF                 |
| TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM                                                                                                                                                                                    | AFG<br>AGL          |
| EXOTHERMIC WITH INSPECTION SLEEVE                                                                                                                                                                                              | AIC                 |
| GROUNDING BAR                                                                                                                                                                                                                  | ALUM<br>ALT         |
|                                                                                                                                                                                                                                | ANT                 |
| TEST GROUND ROD WITH INSPECTION SLEEVE                                                                                                                                                                                         | APPROX              |
| SINGLE POLE SWITCH                                                                                                                                                                                                             | ARCH<br>ATS         |
|                                                                                                                                                                                                                                | AWG<br>BATT<br>BLDG |
| DUPLEX GFCI RECEPTACLE                                                                                                                                                                                                         | BLKG                |
| FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48-T8                                                                                                                                                                               | BERG<br>BM<br>BTC   |
| SMOKE DETECTION (DC)                                                                                                                                                                                                           | BOF<br>CAB          |
| EMERGENCY LIGHTING (DC)                                                                                                                                                                                                        | CANT<br>CHG         |
| SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW                                                                                                                                                                                       | CLG<br>CLR          |
| CHAIN LINK FENCE         x                                                                                                                                                                                                     | COL                 |
| WOOD/WROUGHT IRON FENCE                                                                                                                                                                                                        | COMM<br>CONC        |
| WALL STRUCTURE         V////////////////////////////////////                                                                                                                                                                   | CONSTR              |
| LEASE AREA                                                                                                                                                                                                                     | DBL                 |
| PROPERTY LINE (PL)                                                                                                                                                                                                             | DC<br>DEPT          |
| SETBACKS                                                                                                                                                                                                                       | DF                  |
|                                                                                                                                                                                                                                | DIA                 |
| CABLE TRAY                                                                                                                                                                                                                     | DIAG<br>DIM         |
| WATER LINE     W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W | DWG                 |
| UNDERGROUND POWER                                                                                                                                                                                                              | DWL                 |
| UNDERGROUND TELCO — UGT — UGT — UGT — UGT — UGT — UGT —                                                                                                                                                                        | EA<br>EC            |
| OVERHEAD POWER OHP OHP OHP OHP OHP                                                                                                                                                                                             | EL.                 |
| OVERHEAD TELCO OHT OHT OHT OHT                                                                                                                                                                                                 | ELEC<br>EMT         |
| UNDERGROUND TELCO/POWER UGT/P UGT/P UGT/P UGT/P                                                                                                                                                                                | ENG                 |
| ABOVE GROUND POWER AGP AGP AGP AGP AGP AGP                                                                                                                                                                                     | EQ                  |
| ABOVE GROUND TELCO —— AGT —— AGT —— AGT —— AGT —— AGT ——                                                                                                                                                                       | EXP<br>EXT          |
| ABOVE GROUND TELCO/POWER AGT/P AGT/P AGT/P AGT/P                                                                                                                                                                               | EW                  |
| WORKPOINT W.P.                                                                                                                                                                                                                 | FAB                 |
|                                                                                                                                                                                                                                | FF<br>FG            |
| SECTION REFERENCE                                                                                                                                                                                                              | FIF                 |
|                                                                                                                                                                                                                                | FIN                 |
|                                                                                                                                                                                                                                | FLR<br>FDN          |
| DETAIL REFERENCE                                                                                                                                                                                                               | FOC                 |
|                                                                                                                                                                                                                                | FOM                 |
|                                                                                                                                                                                                                                | FOS<br>FOW          |
|                                                                                                                                                                                                                                | FS                  |
|                                                                                                                                                                                                                                | FT                  |
|                                                                                                                                                                                                                                | FTG                 |
|                                                                                                                                                                                                                                | GA<br>GEN           |
|                                                                                                                                                                                                                                | GFCI                |
|                                                                                                                                                                                                                                | GLB                 |
|                                                                                                                                                                                                                                | GLV<br>GPS          |
|                                                                                                                                                                                                                                | GPS<br>GND          |
|                                                                                                                                                                                                                                | GSM                 |
|                                                                                                                                                                                                                                | HDG                 |
|                                                                                                                                                                                                                                | HDR<br>HGR          |
|                                                                                                                                                                                                                                | HVAC                |
|                                                                                                                                                                                                                                | нт                  |
|                                                                                                                                                                                                                                | IGR                 |
|                                                                                                                                                                                                                                |                     |
| <u>LEGEND</u>                                                                                                                                                                                                                  |                     |

# ABBREVIATIONS

| ANCHOR BOLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN                                                                                                                                                                                                                                                         | INCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INT                                                                                                                                                                                                                                                        | INTERIOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ALTERNATING CURRENT<br>ADDITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LB(S)                                                                                                                                                                                                                                                      | POUND(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ABOVE FINISHED FLOOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lf<br>LTE                                                                                                                                                                                                                                                  | LINEAR FEET<br>LONG TERM EVOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABOVE FINISHED GRADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAS                                                                                                                                                                                                                                                        | MASONRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ABOVE GROUND LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAX                                                                                                                                                                                                                                                        | MAXIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AMPERAGE INTERRUPTION CAPACITY ALUMINUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB                                                                                                                                                                                                                                                         | MACHINE BOLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ALTERNATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MECH<br>MFR                                                                                                                                                                                                                                                | MECHANICAL<br>MANUFACTURER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ANTENNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MGB                                                                                                                                                                                                                                                        | MASTER GROUND BAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| APPROXIMATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIN                                                                                                                                                                                                                                                        | MINIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ARCHITECTURAL<br>AUTOMATIC TRANSFER SWITCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MISC                                                                                                                                                                                                                                                       | MISCELLANEOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AMERICAN WIRE GAUGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTL<br>MTS                                                                                                                                                                                                                                                 | METAL<br>MANUAL TRANSFER SWITCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BATTERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW                                                                                                                                                                                                                                                         | MICROWAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BUILDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NEC                                                                                                                                                                                                                                                        | NATIONAL ELECTRIC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BLOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                         | NEWTON METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BLOCKING<br>BEAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NO.                                                                                                                                                                                                                                                        | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BARE TINNED COPPER CONDUCTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #<br>NTS                                                                                                                                                                                                                                                   | NUMBER<br>NOT TO SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BOTTOM OF FOOTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OC                                                                                                                                                                                                                                                         | ON-CENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CABINET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OSHA                                                                                                                                                                                                                                                       | OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CANTILEVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OPNG                                                                                                                                                                                                                                                       | OPENING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CHARGING<br>CEILING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P/C                                                                                                                                                                                                                                                        | PRECAST CONCRETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CLEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCS                                                                                                                                                                                                                                                        | PERSONAL COMMUNICATION SERVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCU<br>PRC                                                                                                                                                                                                                                                 | PRIMARY CONTROL UNIT<br>PRIMARY RADIO CABINET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COMMON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PP                                                                                                                                                                                                                                                         | POLARIZING PRESERVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CONCRETE<br>CONSTRUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PSF                                                                                                                                                                                                                                                        | POUNDS PER SQUARE FOOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DOUBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PSI                                                                                                                                                                                                                                                        | POUNDS PER SQUARE INCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DIRECT CURRENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PT                                                                                                                                                                                                                                                         | PRESSURE TREATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DEPARTMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PWR<br>QTY                                                                                                                                                                                                                                                 | POWER CABINET<br>QUANTITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DOUGLAS FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RAD                                                                                                                                                                                                                                                        | RADIUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DIAMETER<br>DIAGONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RECT                                                                                                                                                                                                                                                       | RECTIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DIMENSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REF                                                                                                                                                                                                                                                        | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DRAWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REINF                                                                                                                                                                                                                                                      | REINFORCEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DOWEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | REQ'D                                                                                                                                                                                                                                                      | REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                            | REMOTE ELECTRIC TILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ret<br>Rf                                                                                                                                                                                                                                                  | REMOTE ELECTRIC TILT<br>RADIO FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ELECTRICAL CONDUCTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RF<br>RMC<br>RRH                                                                                                                                                                                                                                           | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ELECTRICAL CONDUCTOR<br>ELEVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RF<br>RMC<br>RRH<br>RRU                                                                                                                                                                                                                                    | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RF<br>RMC<br>RRH<br>RRU<br>RWY                                                                                                                                                                                                                             | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RF<br>RMC<br>RRH<br>RRU                                                                                                                                                                                                                                    | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH                                                                                                                                                                                                                      | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM                                                                                                                                                                                                | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC                                                                                                                                                                                        | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM                                                                                                                                                                                                | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH GRADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ                                                                                                                                                                                  | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME                                                                                                                                                                                                                                                                                                                                                                                                                                     | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL                                                                                                                                                              | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH GRADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP                                                                                                                                                      | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)                                                                                                                                                                                                                                                                                                                                                                                                                       | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK                                                                                                                                               | RADIO FREQUENCYRIGID METALLIC CONDUITREMOTE RADIO HEADREMOTE RADIO UNITRACEWAYSCHEDULESHEETSMART INTEGRATED ACCESS DEVICESIMILARSPECIFICATIONSQUARESTAINLESS STEELSTANDARDSTEELTEMPORARYTHICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE                                                                                                                                                                                                                                                                                                                                                                            | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP                                                                                                                                                      | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY                                                                                                                                                                                                                                                                                                                                                         | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA                                                                                                                           | RADIO FREQUENCYRIGID METALLIC CONDUITREMOTE RADIO HEADREMOTE RADIO UNITRACEWAYSCHEDULESHEETSMART INTEGRATED ACCESS DEVICESIMILARSPECIFICATIONSQUARESTAINLESS STEELSTANDARDSTEELTEMPORARYTHICKNESSTOWER MOUNTED AMPLIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE                                                                                                                                                                                                                                                                                                                                                                            | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOC                                                                                                                    | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD                                                                                                                                                                                                                                                                                                                                         | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOC<br>TOF                                                                                                             | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT                                                                                                                                                                                                                                                                                               | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOC<br>TOF<br>TOP                                                                                                      | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING                                                                                                                                                                                                                                                                    | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOC<br>TOF                                                                                                             | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT                                                                                                                                                                                                                                                                                               | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SHT<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOC<br>TOF<br>TOP<br>TOS                                                                                               | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE                                                                                                                                                                                                                                                           | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIM<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOC<br>TOF<br>TOP<br>TOS<br>TOW<br>TVSS<br>TYP                                                                                 | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE<br>GENERATOR<br>GROUND FAULT CIRCUIT INTERRUPTER<br>GLUE LAMINATED BEAM                                                                                                                                                                                   | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF                                                            | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STAINLESS STEEL<br>STAINARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF FUNDATION<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF WALL<br>TRANSIENT VOLTAGE SURGE SUPPRESSION<br>TYPICAL<br>UNDERGROUND                                                                                                                                                                                                                                                                                                                                       |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE<br>GENERATOR<br>GROUND FAULT CIRCUIT INTERRUPTER<br>GLUE LAMINATED BEAM<br>GALVANIZED                                                                                                                                                                     | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIM<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOC<br>TOF<br>TOP<br>TOS<br>TOW<br>TVSS<br>TYP                                                                                 | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH (ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE<br>GENERATOR<br>GROUND FAULT CIRCUIT INTERRUPTER<br>GLUE LAMINATED BEAM<br>GALVANIZED<br>GLOBAL POSITIONING SYSTEM                                                                                                                       | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF                                                                    | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STAINLESS STEEL<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF STEEL<br>TOP OF WALL<br>TRANSIENT VOLTAGE SURGE SUPPRESSION<br>TYPICAL<br>UNDERGROUND<br>UNDERWRITERS LABORATORY                                                                                                                                                                                                                                                                             |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE<br>GENERATOR<br>GROUND FAULT CIRCUIT INTERRUPTER<br>GLUE LAMINATED BEAM<br>GALVANIZED                                                                                                                                                                     | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIM<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF                                                             | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF FLATE (PARAPET)<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>UNDERGROUND<br>UNDERGROUND<br>UNDERWRITERS LABORATORY<br>UNIESS NOTED OTHERWISE<br>UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM<br>UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM                                                                                                                                                                                                                                                                     |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH GED<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE<br>GENERATOR<br>GROUND FAULT CIRCUIT INTERRUPTER<br>GLUE LAMINATED BEAM<br>GALVANIZED<br>GLOBAL POSITIONING SYSTEM<br>GROUND                | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIAD<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF                                                            | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF PLATE (PARAPET)<br>TOP OF STEEL<br>TOP OF STEEL<br>UNDERGROUND<br>UNDERWRITERS LABORATORY<br>UNLESS NOTED OTHERWISE<br>UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM<br>UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)<br>VERIFIED IN FIELD                                                                                                                                             |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH (ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE<br>GENERATOR<br>GROUND FAULT CIRCUIT INTERRUPTER<br>GLUE LAMINATED BEAM<br>GALVANIZED<br>GLOBAL POSITIONING SYSTEM<br>GROUND<br>GLOBAL SYSTEM FOR MOBILE<br>HOT DIPPED GALVANIZED<br>HEADER  | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIM<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF                                                             | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF STEEL<br>TOP OF STEEL<br>UNDERGROUND<br>UNDERWRITERS LABORATORY<br>UNLESS NOTED OTHERWISE<br>UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM<br>UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)<br>VERIFIED IN FIELD<br>WIDE                                                                                                                                                                                          |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH (ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE<br>GENERATOR<br>GROUND FAULT CIRCUIT INTERRUPTER<br>GLUE LAMINATED BEAM<br>GALVANIZED<br>GLOBAL POSITIONING SYSTEM<br>GROUND<br>GLOBAL SYSTEM FOR MOBILE<br>HOT DIPPED GALVANIZED<br>HEADER<br>HANGER                                 | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIM<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOF<br>TOF<br>TOP<br>TOS<br>TOF<br>TOP<br>TOS<br>TOF<br>UG<br>UL<br>UNO<br>UMTS<br>UPS<br>VIF<br>W                             | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>UNDERGROUND<br>UNDERWRITERS LABORATORY<br>UNLESS NOTED OTHERWISE<br>UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM<br>UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH(ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE<br>GENERATOR<br>GROUND FAULT CIRCUIT INTERRUPTER<br>GLUE LAMINATED BEAM<br>GALVANIZED<br>GLOBAL POSITIONING SYSTEM<br>GROUND<br>GLOBAL SYSTEM FOR MOBILE<br>HOT DIPPED GALVANIZED<br>HEADER<br>HANGER | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIM<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF<br>TOF                                                             | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>UNDERGROUND<br>UNDERWRITERS LABORATORY<br>UNLESS NOTED OTHERWISE<br>UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM<br>UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)<br>VERIFIED IN FIELD<br>WIDE                                                                                                                                                                                                          |
| ELECTRICAL CONDUCTOR<br>ELEVATION<br>ELECTRICAL<br>ELECTRICAL METALLIC TUBING<br>ENGINEER<br>EQUAL<br>EXPANSION<br>EXTERIOR<br>EACH WAY<br>FABRICATION<br>FINISH FLOOR<br>FINISH FLOOR<br>FINISH GRADE<br>FACILITY INTERFACE FRAME<br>FINISH (ED)<br>FLOOR<br>FOUNDATION<br>FACE OF CONCRETE<br>FACE OF MASONRY<br>FACE OF MASONRY<br>FACE OF STUD<br>FACE OF STUD<br>FACE OF WALL<br>FINISH SURFACE<br>FOOT<br>FOOTING<br>GAUGE<br>GENERATOR<br>GROUND FAULT CIRCUIT INTERRUPTER<br>GLUE LAMINATED BEAM<br>GALVANIZED<br>GLOBAL POSITIONING SYSTEM<br>GROUND<br>GLOBAL SYSTEM FOR MOBILE<br>HOT DIPPED GALVANIZED<br>HEADER<br>HANGER                                 | RF<br>RMC<br>RRH<br>RRU<br>RWY<br>SCH<br>SIM<br>SIM<br>SPEC<br>SQ<br>SS<br>STD<br>STL<br>TEMP<br>THK<br>TMA<br>TN<br>TOA<br>TOF<br>TOP<br>TOS<br>TOP<br>TOS<br>TOP<br>TOS<br>TOP<br>TOS<br>TVSS<br>TYP<br>UG<br>UL<br>UNO<br>UMTS<br>UPS<br>VIF<br>W<br>W/ | RADIO FREQUENCY<br>RIGID METALLIC CONDUIT<br>REMOTE RADIO HEAD<br>REMOTE RADIO UNIT<br>RACEWAY<br>SCHEDULE<br>SHEET<br>SMART INTEGRATED ACCESS DEVICE<br>SIMILAR<br>SPECIFICATION<br>SQUARE<br>STAINLESS STEEL<br>STAINLESS STEEL<br>STANDARD<br>STEEL<br>TEMPORARY<br>THICKNESS<br>TOWER MOUNTED AMPLIFIER<br>TOE NAIL<br>TOP OF ANTENNA<br>TOP OF CURB<br>TOP OF FOUNDATION<br>TOP OF FOUNDATION<br>TOP OF FUNDATION<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>TOP OF STEEL<br>UNDERGROUND<br>UNDERGROUND<br>UNDERWRITERS LABORATORY<br>UNLESS NOTED OTHERWISE<br>UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM<br>UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)<br>VERIFIED IN FIELD<br>WIDE<br>WITH<br>WOOD                                                                                                                                                                         |



SITE ACTIVITY REQUIREMENTS:

NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

"LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT: 2.

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE. BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE. BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY. OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB. INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT 3. IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

ALL CONSTRUCTION MEANS AND METHODS: INCLUDING BUT NOT LIMITED TO. ERECTION PLANS. RIGGING PLANS. CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS. INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION. TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION. ALTERATION. AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES. REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES. ORDINANCES AND APPLICABLE REGULATIONS.

THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START 9. OF CONSTRUCTION.

ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE 10. PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL. DEBRIS. AND TRASH AT THE COMPLETION OF 12. THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

ALL EXISTING INACTIVE SEWER. WATER. GAS. ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE 13. WORK. SHALL BE REMOVED AND/OR CAPPED. PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS. 15.

THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE 16. APPLICATION.

THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY. SHALL BE GRADED TO A UNIFORM SLOPE. AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION. SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY

19. DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY 21. BASIS.

NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

# **GENERAL NOTES:**

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS. THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER. MORE STRICT REQUIREMENTS. SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS. ORDINANCES. RULES. REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES. ORDINANCES AND APPLICABLE REGULATIONS.

UNLESS NOTED OTHERWISE. THE WORK SHALL INCLUDE FURNISHING MATERIALS. EQUIPMENT. APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS. THE CONTRACTOR SHALL PROPOSE 10. AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER. AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER. TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.





CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE 17. AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. GRADE PVC CONDUIT. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 2. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION psf. OCCURS OR FLEXIBILITY IS NEEDED. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. SCREW FITTINGS ARE NOT ACCEPTABLE. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT. 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE NEC. BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS 21. MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. (WIREMOLD SPECMATE WIREWAY). ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). 22. SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF #4 BARS AND SMALLER 40 ksi THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE #5 BARS AND LARGER 60 ksi MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT DRAWINGS: FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET • CONCRETE EXPOSED TO EARTH OR WEATHER: STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. • #6 BARS AND LARGER 2" METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR • #5 BARS AND SMALLER 1-1/2" EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR • CONCRETE NOT EXPOSED TO EARTH OR WEATHER: BETTER) FOR EXTERIOR LOCATIONS. • SLAB AND WALLS 3/4" NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. BEAMS AND COLUMNS 1-1/2" THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. **ELECTRICAL INSTALLATION NOTES:** INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". 29. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 30. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE. 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED. 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. TIE WRAPS ARE NOT ALLOWED. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) 9 WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 10. TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS 11. OTHERWISE SPECIFIED. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13. BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE). RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND 14. NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15. EXPOSED INDOOR LOCATIONS.



# **GROUNDING NOTES:**

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE. BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. g USE OF 90" BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45" BENDS CAN BE ADEQUATELY 10. SUPPORTED.

EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 11.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. 13.

ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR.

APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND 15. CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND 18. CONDUCTOR.

GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED 19. THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE. THE CONTRACTOR SHALL ROUTE 21. TWO GROUNDING CONDUCTORS FROM THE ROOFTOP. TOWERS, AND WATER TOWERS GROUNDING RING. TO THE EXISTING GROUNDING SYSTEM. THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.



#### **Elizabeth Sturdy**

From: Sent: To: Cc: Subject: Katie Adams <kadams@nbcllc.com> Monday, October 17, 2022 12:26 PM Elizabeth Sturdy Barbara Carboni RE: Structural Analysis Report

Hi Elizabeth,

Thank you for reaching out about this! Yes, Tim Greene and I discussed the structural analysis which was run as risk 3. I reviewed the report and it includes the proposed DISH equipment, so I would like to use this report as part of DISH's application packet.

Thank you very much, and feel free to reach out with any questions.

Katie Adams SR Site Acquisition Specialist

NETWORK BUILDING + CONSULTING

100 Apollo Drive | Suite 303 | Chelmsford, MA | 01824 M 781-392-7547

÷





Date: September 21, 2022



B+T Group 1717 S, Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630

| Subject:                      | Structural Analysis Report                                                                                                                            |                                                       |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|
| Carrier Designation:          | Site Number:<br>Site Name:                                                                                                                            | 4HY0568A<br>BS13XC597                                 |  |  |
| Crown Castle Designation:     | BU Number:<br>Site Name:<br>JDE Job Number:<br>Work Order Number:<br>Order Number:                                                                    | 841273<br>TRURO<br>723038<br>2161774<br>623577 Rev. 1 |  |  |
| Engineering Firm Designation: | B+T Group Project Number:                                                                                                                             | 100736.010.01.0001                                    |  |  |
| Site Data:                    | 344 Route 6, North Truro, Barnstable County, MA<br>Latitude <i>4</i> 2° 1′ <i>18″</i> , Longitude <i>-70° 4′ 30″</i><br>170 Foot - Self Support Tower |                                                       |  |  |

B+T Group is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

#### Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 149 mph as required by the 2015 International Building Code as amended by the Massachusetts State Building Code, Ninth Edition. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Andrew Fisher

Respectfully submitted by: B+T Engineering, Inc.



## TABLE OF CONTENTS

#### 1) INTRODUCTION

#### 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

#### **3) ANALYSIS PROCEDURE**

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

#### 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Component Stresses vs. Capacity – LC7

4.1) Recommendations

#### 5) APPENDIX A

tnxTower Output

#### 6) APPENDIX B

**Base Level Drawing** 

#### 7) APPENDIX C

Additional Calculations

### 1) INTRODUCTION

This tower is a 170 ft. Self-Support tower designed by Sabre and mapped by GPD Group.

#### 2) ANALYSIS CRITERIA

| TIA-222-H |
|-----------|
| 111       |
| 149 mph   |
| С         |
| 1         |
| 1.5 in    |
| 50 mph    |
| 60 mph    |
|           |

#### **Table 1 - Proposed Equipment Configuration**

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model             | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) |          |                  |  |  |
|------------------------|-------------------------------------|--------------------------|-------------------------|---------------------------|----------------------------|---------------------------|----------|------------------|--|--|
|                        |                                     | 3                        | Ericsson                | 4003_840590966_TMO        |                            |                           |          |                  |  |  |
|                        | 169.0                               | 169.0                    | 169.0                   |                           | 3                          | 3                         | Ericsson | AIR 6419 B41_TMO |  |  |
| 168.0                  |                                     |                          |                         | 3                         | Ericsson                   | RADIO 4460 B2/B25 B66_TMO | 3        | 1-5/8            |  |  |
| 100.0                  |                                     |                          |                         | 3                         | Ericsson                   | Radio 4480_TMOV2          |          |                  |  |  |
|                        |                                     | 3                        | Rfs Celwave             | APXVLL19P_43-C-A20_TMO    |                            |                           |          |                  |  |  |
|                        | 168.0                               | 3                        | Site Pro1               | VFA12-HD Mount            |                            |                           |          |                  |  |  |
| 71.0                   | 73.0                                | 1                        | Pctel                   | GPS-TMG-HR-26N            | 1                          | 1/2                       |          |                  |  |  |
| 71.0                   | 71.0                                | 1                        |                         | Side Arm Mount [SO 601-1] |                            | 1/2                       |          |                  |  |  |

#### Table 2 - Other Considered Equipment

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft)  | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model             | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) |
|------------------------|--------------------------------------|--------------------------|-------------------------|---------------------------|----------------------------|---------------------------|
| 170.0                  | 174.0                                | 1                        | Decibel                 | DB806-XC                  | 1                          | 1/2                       |
| 160.0                  | 162.0                                | 1                        | Shively Labs 6813-2 HW  |                           | 1                          | 1-5/8                     |
| 100.0                  | 160.0                                | 1                        |                         | Side Arm Mount [SO 305-1] |                            | 1-5/6                     |
| 151.0                  | 151.0                                | 4                        | Powerwave Tech.         | P65.15.XL.0               | 2                          | 1-1/4                     |
| 131.0                  | 51.0 151.0 2 Sector Mount [SM 602-1] |                          | Sector Mount [SM 602-1] | 2                         | 1-1/4                      |                           |
|                        |                                      | 6                        | Ericsson                | RRUS 11                   |                            |                           |
|                        |                                      | 3                        | Ericsson                | RRUS 32                   |                            |                           |
|                        |                                      | 3                        | Ericsson                | RRUS 32 B66               |                            |                           |
|                        | 3 Ka                                 | 6                        | Kaelus                  | DBC0061F1V51-2            | 12                         | 1-5/8                     |
|                        |                                      | 3                        | Kathrein                | 800 10122                 |                            |                           |
| 145.0                  |                                      | Kathrein                 | 860 10025               | 4                         | 5/8                        |                           |
|                        |                                      | 3                        | Kmw Comm.               | AM-X-CD-16-65-00T-RET     | 2                          | 3/8                       |
|                        |                                      | 6                        | Powerwave Tech.         | LGP21401                  |                            |                           |
|                        |                                      | 3                        | Quintel Tech.           | QS66512-2                 |                            |                           |
|                        |                                      | 2                        | Raycap                  | DC6-48-60-18-8F           |                            |                           |
|                        |                                      | 1                        |                         | Sector Mount [SM 702-3]   | ]                          |                           |

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Manufacturer Antenna Model Of Fe |      | Feed<br>Line<br>Size (in) |
|------------------------|-------------------------------------|--------------------------|-------------------------|----------------------------------|------|---------------------------|
| 120.0                  | 139.0                               | 1                        |                         | Pipe Mount [PM 601-1]            | 4    |                           |
| 139.0                  | 138.0                               | 38.0 1 Andrew PAR6-59A   |                         | - 1                              | EW52 |                           |
|                        | 3 Alcat                             |                          | Alcatel Lucent          | RRH2X60-AWS                      |      |                           |
|                        |                                     | 3                        | Commscope               | HBXX-6516DS-A2M                  |      |                           |
|                        |                                     | 3                        | Commscope               | LNX-6514DS-A1M                   | -    |                           |
| 400.0                  | 131.0                               | 3                        | Commscope               | SBNHH-1D65B                      | 10   | 4 5/0                     |
| 130.0                  |                                     | 2                        | CSS                     | X7C-665-2                        | - 19 | 1-5/8                     |
|                        |                                     | 1                        | CSS                     | X7C-680-2                        | -    |                           |
|                        |                                     | 2                        | Rfs Celwave             | DB-B1-6C-12AB-0Z                 |      |                           |
|                        | 130.0                               | 1                        |                         | Sector Mount [SM 702-3]          |      |                           |
|                        |                                     | 1                        |                         | Commscope MTC3975083 (3)         |      | 1                         |
|                        | 122.0                               | 3                        | Fujitsu                 | TA08025-B604                     |      |                           |
| 122.0                  |                                     | 3                        | Fujitsu                 | TA08025-B605                     | 1    | 1-1/2                     |
|                        |                                     | 3                        | Jma Wireless            | MX08FRO665-21                    | -    |                           |
|                        |                                     | 1                        | Raycap                  | RDIDC-9181-PF-48                 |      |                           |
|                        | 117.0                               | 1                        | Rfs Celwave             | PD220-5                          |      |                           |
|                        | 116.0                               | 1                        | Telewave ANT150F6       |                                  | -    |                           |
|                        | 114.0                               | 1                        | Sinclair SRL-210C-4     |                                  |      |                           |
|                        | 113.0                               | 1                        | Decibel DB540K-F        |                                  |      |                           |
| 404.0                  | 112.0                               | 2                        | Rfs Celwave             | AO8610-5T0                       | 10   | 7/8<br>3/8                |
| 104.0                  | 107.0                               | 1                        | Kathrein                | K751221                          | 8    |                           |
|                        |                                     | 2                        | Commscope               | VHLPX4-11W-6WH                   |      |                           |
|                        | 106.0                               | 1                        | Rfs Celwave             | 10191                            | -    |                           |
|                        |                                     | 1                        | Telewave                | ANT150F2                         |      |                           |
|                        | 104.0                               | 1                        |                         | Sabre 30' Specialty Platform     |      |                           |
|                        |                                     | 3                        | Ericsson                | ERICSSON AIR 21 B4A B2P          |      | 1                         |
|                        |                                     | 3                        | Ericsson                | RADIO 4449 B12/B71               |      |                           |
| 00.0                   | 97.0                                | 3                        | Ericsson                | RRUS 11 B2                       | 3    | 1-1/4                     |
| 96.0                   |                                     | 3                        | Rfs Celwave             | APXVAARR24_43-U-NA20             | 6    | 7/8<br>3/8                |
|                        |                                     | 3                        | Rfs Celwave             | ATM1900D-1A20                    |      | 3/8                       |
|                        | 96.0                                | 1                        |                         | Sector Mount [SM 403-3]          | 1    |                           |
| 07.0                   | 1 Scala PR-950                      |                          | PR-950                  |                                  | 1/0  |                           |
| 87.0                   | 87.0                                | 1                        |                         | Side Arm Mount [SO 201-1]        | - 1  | 1/2                       |

## 3) ANALYSIS PROCEDURE

#### **Table 3 - Documents Provided**

| Document                   | Reference        | Source    |
|----------------------------|------------------|-----------|
| Tower Manufacturer Drawing | 4287353          | CCI Sites |
| Foundation Drawing         | 4468581          | CCI Sites |
| Geotech Report             | 4287355          | CCI Sites |
| Crown CAD Package          | Date: 06/28/2022 | CCI Sites |

tnxTower Report - version 8.1.1.0

#### 3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

#### 3.2) Assumptions

- 1) The tower and structures were maintained in accordance with the TIA-222 standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the tower.

#### 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

| Section<br>No. | Elevation (ft) | Component Type           | Size                   | Critical<br>Element | P (K)    | SF*P_allow (K) | %<br>Capacity | Pass / Fail |
|----------------|----------------|--------------------------|------------------------|---------------------|----------|----------------|---------------|-------------|
| T1             | 170 - 160      | Leg                      | Sabre 3.5" x 0.216"    | 1                   | -7.736   | 86.635         | 8.9           | Pass        |
| T2             | 160 - 140      | Leg                      | Sabre 4.5" x 0.438"    | 19                  | -40.935  | 210.881        | 19.4          | Pass        |
| Т3             | 140 - 120      | Leg                      | Sabre 6.625" x 0.432"  | 40                  | -95.003  | 360.255        | 26.4          | Pass        |
| T4             | 120 - 100      | Leg                      | Sabre 8.625" x 0.5"    | 62                  | -160.765 | 569.808        | 28.2          | Pass        |
| T5             | 100 - 80       | Leg                      | Sabre 10.750" x 0.500" | 83                  | -231.538 | 702.092        | 33.0          | Pass        |
| Т6             | 80 - 60        | Leg                      | Sabre 12.75" x 0.5"    | 99                  | -310.146 | 859.488        | 36.1          | Pass        |
| T7             | 60 - 40        | Leg                      | Sabre 16" x 0.5"       | 114                 | -389.310 | 1110.690       | 35.1          | Pass        |
| Т8             | 40 - 20        | Leg                      | Sabre 18" x 0.5"       | 129                 | -467.770 | 1263.528       | 37.0          | Pass        |
| Т9             | 20 - 0         | Leg                      | Sabre 18" x 0.5"       | 144                 | -523.334 | 1289.925       | 40.6          | Pass        |
| T1             | 170 - 160      | Diagonal                 | L2x2x3/8               | 12                  | -3.354   | 18.112         | 18.5          | Pass        |
| T2             | 160 - 140      | Diagonal                 | L3x3x3/8               | 22                  | -8.889   | 40.506         | 21.9          | Pass        |
| Т3             | 140 - 120      | Diagonal                 | L3 1/2x3 1/2x3/8       | 44                  | -12.897  | 51.321         | 25.1          | Pass        |
| T4             | 120 - 100      | Diagonal                 | L3 1/2x3 1/2x1/2       | 68                  | -15.693  | 53.678         | 29.2          | Pass        |
| T5             | 100 - 80       | Diagonal                 | L5x5x1/2               | 89                  | -21.079  | 105.471        | 20.0          | Pass        |
| Т6             | 80 - 60        | Diagonal                 | L5x5x5/8               | 104                 | -22.481  | 116.354        | 19.3          | Pass        |
| T7             | 60 - 40        | Diagonal                 | L5x5x5/8               | 119                 | -24.079  | 101.338        | 23.8          | Pass        |
| Т8             | 40 - 20        | Diagonal                 | L5x5x5/8               | 134                 | -26.567  | 87.432         | 30.4          | Pass        |
| Т9             | 20 - 0         | Diagonal                 | L5x5x5/8               | 160                 | -34.851  | 123.179        | 28.3          | Pass        |
| Т9             | 20 - 0         | Horizontal               | 2L3 1/2x3 1/2x1/4x3/8  | 159                 | -25.174  | 40.214         | 62.6          | Pass        |
| T1             | 170 - 160      | Top Girt                 | L2 1/2x2 1/2x3/16      | 4                   | -0.291   | 8.385          | 3.5           | Pass        |
| Т9             | 20 - 0         | Redund Horz 1<br>Bracing | L3x3x5/16              | 157                 | -9.076   | 43.079         | 21.1          | Pass        |
| Т9             | 20 - 0         | Redund Diag 1<br>Bracing | L3x3x1/4               | 158                 | -5.764   | 23.979         | 24.0          | Pass        |
| Т9             | 20 - 0         | Inner Bracing            | L3x3x3/16              | 166                 | -0.033   | 5.612          | 0.8           | Pass        |
|                |                |                          |                        |                     |          |                | Summary       |             |
|                |                |                          |                        |                     |          | Leg (T9)       | 40.6          | Pass        |
|                |                |                          |                        |                     |          | Diagonal (T8)  | 30.4          | Pass        |

| Section<br>No. | Elevation (ft) | Component Type | Size | Critical<br>Element | Р (К) | SF*P_allow (K)                | %<br>Capacity | Pass / Fail |
|----------------|----------------|----------------|------|---------------------|-------|-------------------------------|---------------|-------------|
|                |                |                |      |                     |       | Horizontal (T9)               | 62.6          | Pass        |
|                |                |                |      |                     |       | Top Girt (T1)                 | 3.5           | Pass        |
|                |                |                |      |                     |       | Redund Horz 1<br>Bracing (T9) | 21.1          | Pass        |
|                |                |                |      |                     |       | Redund Diag 1<br>Bracing (T9) | 24.0          | Pass        |
|                |                |                |      |                     |       | Inner Bracing<br>(T9)         | 0.8           | Pass        |
|                |                |                |      |                     |       | Bolt Checks                   | 76.5          | Pass        |
|                |                |                |      |                     |       | Rating =                      | 76.5          | Pass        |

#### Table 5 - Tower Component Stresses vs. Capacity – LC7

| Notes | Component                          | Elevation (ft) | % Capacity | Pass / Fail |
|-------|------------------------------------|----------------|------------|-------------|
| 1,2   | Anchor Rods                        | Base           | 30.8       | Pass        |
| 1,2   | Base Foundation (Structure)        | Base           | 11.9       | Pass        |
| 1,2   | Base Foundation (Soil Interaction) | Base           | 62.6       | Pass        |

| Structure Rating (max from all components) = | 76.5%  |
|----------------------------------------------|--------|
| offucture rating (max normal components) –   | 10.070 |

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

2) Rating per TIA-222-H Section 15.5.

#### 4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

**TNXTOWER OUTPUT** 



| SYMBOL LIST |                     |      |                   |  |
|-------------|---------------------|------|-------------------|--|
| MARK        | SIZE                | MARK | SIZE              |  |
| А           | Sabre 3.5" x 0.216" | В    | L2 1/2x2 1/2x3/16 |  |

#### **MATERIAL STRENGTH**

| GRADE   | Fy     | Fu     | GRADE | Fy     | Fu     |
|---------|--------|--------|-------|--------|--------|
| A572-50 | 50 ksi | 65 ksi | A36   | 36 ksi | 58 ksi |

### **TOWER DESIGN NOTES**

1. Tower is located in Barnstable County, Massachusetts.

2.

Tower designed for Exposure C to the TIA-222-H Standard. Tower designed for a 149 mph basic wind in accordance with the TIA-222-H Standard. 3. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height. 4.

Deflections are based upon a 60 mph wind. 5.

Tower Risk Category III. 6.

Topographic Category 1 with Crest Height of 0' 7.

8. TIA-222-H Annex S

9. TOWER RATING: 76.5%



 $\triangle$ 

MAX. CORNER REACTIONS AT BASE: DOWN: 564 K SHEAR: 72 K

UPLIFT: -473 K SHEAR: 63 K

#### AXIAL 268 K

MOMENT 2354 kip-ft

TORQUE 8 kip-ft 50 mph WIND - 1.500 in ICE

SHEAR

25 K |

AXIAL 118 K SHEAR MOMENT 123 K 11375 kip-ft

TORQUE 75 kip-ft REACTIONS - 149 mph WIND

| Г       | B+T Group                  | <sup>Job:</sup> 100736.010.01.00                       | 001 - TRURO, MA (BU#                                          | 841273)     |
|---------|----------------------------|--------------------------------------------------------|---------------------------------------------------------------|-------------|
|         | 1717 S, Boulder, Suite 300 | Project:                                               |                                                               |             |
| B+T GRP | Tulsa. OK 74119            | Client: Crown Castle                                   | <sup>Drawn by:</sup> Nithish Acharya                          | App'd:      |
|         | Phone: (918) 587-4630      | <sup>Code:</sup> TIA-222-H                             | Date: 09/21/22                                                | Scale: NTS  |
|         | FAX: (918) 587-4630        | Path:<br>C:UsersUND306/Desktop/SA/Sep 21/100736 841273 | TruroNithishShiva\Trix 010 01 0001\100736 010 01 0001 TRURO M | Dwg No. E-1 |

Plot Plan Total Area - 0.07 Acres



| B+T Group                         | <sup>Job:</sup> 100736.010.01.00                         | 001 - TRURO, MA (BU#                                        | 841273)     |
|-----------------------------------|----------------------------------------------------------|-------------------------------------------------------------|-------------|
| <b>1717</b> S, Boulder, Suite 300 | Project:                                                 |                                                             |             |
| B+T GRP Tulsa. OK 74119           | Client: Crown Castle                                     | <sup>Drawn by:</sup> Nithish Acharya                        | App'd:      |
| Phone: (918) 587-4630             | <sup>Code:</sup> TIA-222-H                               | <sup>Date:</sup> 09/21/22                                   | Scale: NTS  |
| FAX: (918) 587-4630               | Path:<br>C:UsersUND306/Desktop/SA/Sep 21/100736 841273 1 | ruroNithishShiva\Trx 010 01 0001\100736 010 01 0001 TRURO M | Dwg No. E-2 |



## TIA-222-H - 149 mph/50 mph 1.500 in Ice Exposure C Leg Compression (K)

| Г       | B+T Group                  |
|---------|----------------------------|
|         | 1717 S, Boulder, Suite 300 |
| B+T GRP | Tulsa, OK 74119            |
|         | Phone: (918) 587-4630      |
|         | FAX: (918) 587-4630        |

|   |                                 | 001 - TRURO, MA (BU# -               | 841273)     |
|---|---------------------------------|--------------------------------------|-------------|
|   | Project:                        |                                      |             |
| 1 | <sup>Client:</sup> Crown Castle | <sup>Drawn by:</sup> Nithish Acharya | App'd:      |
|   |                                 | Date: 09/21/22                       | Scale: NTS  |
|   | Path:                           |                                      | Dwg No. F-3 |





| 100736.010.01.0001 - TRURO, MA (BU# 841 |                                 |                                                             |             |
|-----------------------------------------|---------------------------------|-------------------------------------------------------------|-------------|
|                                         | Project:                        |                                                             |             |
| 1                                       | <sup>Client:</sup> Crown Castle | <sup>Drawn by:</sup> Nithish Acharya                        | App'd:      |
|                                         |                                 |                                                             | Scale: NTS  |
|                                         | Path:                           | FormNithishShivalTox 010 01 0001\100736 010 01 0001 TRURO M | Dwg No. E-4 |





| ł | <sup>100:</sup> 100736.010.01.00                          | 001 - TRURO, MA (BU#                                           | 841273)     |
|---|-----------------------------------------------------------|----------------------------------------------------------------|-------------|
| ١ | Project:                                                  |                                                                |             |
| Ί | <sup>Client:</sup> Crown Castle                           | Drawn by: Nithish Acharya                                      | App'd:      |
|   |                                                           |                                                                | Scale: NTS  |
| I | Path:<br>C:Users/IND306/Desktop/SA/Sep 21/100736 841273 1 | fruroNithishShiva\Trxx 010 01 0001\100736 010 01 0001 TRURO MJ | Dwg No. E-5 |

#### Feed Line Distribution Chart 0' - 170'

App In Face \_\_\_\_\_ App Out Face \_\_\_\_\_ Truss Leg



| Г       | B+T Group                  | <sup>Job:</sup> 100736.010.01.00                       | 001 - TRURO, MA (BU#                                          | 841273)     |
|---------|----------------------------|--------------------------------------------------------|---------------------------------------------------------------|-------------|
|         | 1717 S, Boulder, Suite 300 | Project:                                               |                                                               |             |
| B+T GRP | Tulsa. OK 74119            | Client: Crown Castle                                   | <sup>Drawn by:</sup> Nithish Acharya                          | App'd:      |
|         | Phone: (918) 587-4630      | <sup>Code:</sup> TIA-222-H                             | Date: 09/21/22                                                | Scale: NTS  |
|         |                            | Path:<br>C:UsersUND306/Desktop/SA/Sep 21/100736 841273 | TruroNithishShiva\Trux 010 01 0001\100736 010 01 0001 TRURO M | Dwg No. E-7 |

Elevation (ft)

Round

Flat



**Crown Castle** 

Client

Nithish Acharya

## **Tower Input Data**

The main tower is a 3x free standing tower with an overall height of 170' above the ground line. The base of the tower is set at an elevation of 0' above the ground line. The face width of the tower is 8' at the top and 25' at the base. This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in Barnstable County, Massachusetts. Tower base elevation above sea level: 107'. Basic wind speed of 149 mph. Risk Category III. Exposure Category C. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height: 0'. Nominal ice thickness of 1.500 in. Ice thickness is considered to increase with height. Ice density of 56.000 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50.000 °F. Deflections calculated using a wind speed of 60 mph. TIA-222-H Annex S. Pressures are calculated at each section. Stress ratio used in tower member design is 1. Tower analysis based on target reliabilities in accordance with Annex S. Load Modification Factors used:  $K_{es}(F_w) = 1.0$ ,  $K_{es}(t_i) = 1.0$ . Maximum demand-capacity ratio is: 1.05. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## Options

- Consider Moments Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules Consider Moments - Horizontals Assume Legs Pinned Calculate Redundant Bracing Forces Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Members in FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable 2 Use Code Safety Factors - Guys Retension Guys To Initial Tension Offset Girt At Foundation Bypass Mast Stability Checks Consider Feed Line Torque Escalate Ice Always Use Max Kz Use Azimuth Dish Coefficients Include Angle Block Shear Check Use Special Wind Profile Project Wind Area of Appurt. Use TIA-222-H Bracing Resist. Exemption  $\sqrt{}$ Include Bolts In Member Capacity Autocalc Torque Arm Areas Use TIA-222-H Tension Splice Exemption Add IBC .6D+W Combination Poles Leg Bolts Are At Top Of Section  $\sqrt{}$ Secondary Horizontal Braces Leg  $\sqrt{}$ Sort Capacity Reports By Component Include Shear-Torsion Interaction Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow SR Members Have Cut Ends Treat Feed Line Bundles As Cylinder Use Top Mounted Sockets SR Members Are Concentric Ignore KL/ry For 60 Deg. Angle Legs Pole Without Linear Attachments Pole With Shroud Or No Appurtenances
  - Outside and Inside Corner Radii Are Known

| tnxTower                                                        | Job<br>100736.010.01.0001 - TRURO, MA (BU# 841273) | Page<br>2 of 39                |
|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------|
| <b>B+T Group</b><br>1717 S, Boulder, Suite 300                  | Project                                            | Date<br>14:41:12 09/21/22      |
| Tulsa, OK 74119<br>Phone: (918) 587-4630<br>FAX: (918) 587-4630 | Client<br>Crown Castle                             | Designed by<br>Nithish Acharya |



<u>Triangular Tower</u>

# **Tower Section Geometry**

| Tower   | Tower     | Assembly | Description | Section | Number   | Section |
|---------|-----------|----------|-------------|---------|----------|---------|
| Section | Elevation | Database |             | Width   | of       | Length  |
|         |           |          |             |         | Sections | -       |
|         | ft        |          |             | ft      |          | ft      |
| T1      | 170'-160' |          |             | 8'      | 1        | 10'     |
| T2      | 160'-140' |          |             | 9'      | 1        | 20'     |
| T3      | 140'-120' |          |             | 11'     | 1        | 20'     |
| T4      | 120'-100' |          |             | 13'     | 1        | 20'     |
| T5      | 100'-80'  |          |             | 15'     | 1        | 20'     |
| T6      | 80'-60'   |          |             | 17'     | 1        | 20'     |
| T7      | 60'-40'   |          |             | 19'     | 1        | 20'     |
| T8      | 40'-20'   |          |             | 21'     | 1        | 20'     |
| Т9      | 20'-0'    |          |             | 23'     | 1        | 20'     |

| Tower Section Geometry (cont'd) |                    |                     |                 |                |                    |                    |                       |
|---------------------------------|--------------------|---------------------|-----------------|----------------|--------------------|--------------------|-----------------------|
| Tower<br>Section                | Tower<br>Elevation | Diagonal<br>Spacing | Bracing<br>Type | Has<br>K Brace | Has<br>Horizontals | Top Girt<br>Offset | Bottom Girt<br>Offset |
|                                 | ft                 | ft                  |                 | End<br>Panels  |                    | in                 | in                    |
| T1                              | 170'-160'          | 5'                  | X Brace         | No             | No                 | 0.000              | 0.000                 |
| T2                              | 160'-140'          | 6'8"                | X Brace         | No             | No                 | 0.000              | 0.000                 |
| T3                              | 140'-120'          | 6'8"                | X Brace         | No             | No                 | 0.000              | 0.000                 |
| T4                              | 120'-100'          | 6'8"                | X Brace         | No             | No                 | 0.000              | 0.000                 |

| tnxT   | 'ower |
|--------|-------|
| eren 1 |       |

**Crown Castle** 

Project

Client

| Tower   | Tower     | Diagonal | Bracing | Has     | Has         | Top Girt | Bottom Girt |
|---------|-----------|----------|---------|---------|-------------|----------|-------------|
| Section | Elevation | Spacing  | Type    | K Brace | Horizontals | Offset   | Offset      |
|         |           |          |         | End     |             |          |             |
|         | ft        | ft       |         | Panels  |             | in       | in          |
| T5      | 100'-80'  | 10'      | X Brace | No      | No          | 0.000    | 0.000       |
| T6      | 80'-60'   | 10'      | X Brace | No      | No          | 0.000    | 0.000       |
| T7      | 60'-40'   | 10'      | X Brace | No      | No          | 0.000    | 0.000       |
| T8      | 40'-20'   | 10'      | X Brace | No      | No          | 0.000    | 0.000       |
| Т9      | 20'-0'    | 10'      | K1 Down | No      | Yes         | 0.000    | 0.000       |

# Tower Section Geometry (cont'd)

| Tower        | Leg  | Leg                    | Leg      | Diagonal    | Diagonal         | Diagonal |
|--------------|------|------------------------|----------|-------------|------------------|----------|
| Elevation    | Type | Size                   | Grade    | Type        | Size             | Grade    |
| ft           |      |                        |          |             |                  |          |
| T1 170'-160' | Pipe | Sabre 3.5" x 0.216"    | A572-50  | Equal Angle | L2x2x3/8         | A36      |
|              | -    |                        | (50 ksi) |             |                  | (36 ksi) |
| T2 160'-140' | Pipe | Sabre 4.5" x 0.438"    | A572-50  | Equal Angle | L3x3x3/8         | A36      |
|              | -    |                        | (50 ksi) |             |                  | (36 ksi) |
| T3 140'-120' | Pipe | Sabre 6.625" x 0.432"  | A572-50  | Equal Angle | L3 1/2x3 1/2x3/8 | A36      |
|              |      |                        | (50 ksi) |             |                  | (36 ksi) |
| T4 120'-100' | Pipe | Sabre 8.625" x 0.5"    | A572-50  | Equal Angle | L3 1/2x3 1/2x1/2 | A36      |
|              |      |                        | (50 ksi) |             |                  | (36 ksi) |
| T5 100'-80'  | Pipe | Sabre 10.750" x 0.500" | A572-50  | Equal Angle | L5x5x1/2         | A36      |
|              |      |                        | (50 ksi) |             |                  | (36 ksi) |
| T6 80'-60'   | Pipe | Sabre 12.75" x 0.5"    | A572-50  | Equal Angle | L5x5x5/8         | A36      |
|              |      |                        | (50 ksi) |             |                  | (36 ksi) |
| T7 60'-40'   | Pipe | Sabre 16" x 0.5"       | A572-50  | Equal Angle | L5x5x5/8         | A36      |
|              |      |                        | (50 ksi) |             |                  | (36 ksi) |
| T8 40'-20'   | Pipe | Sabre 18" x 0.5"       | A572-50  | Equal Angle | L5x5x5/8         | A36      |
|              |      |                        | (50 ksi) |             |                  | (36 ksi) |
| T9 20'-0'    | Pipe | Sabre 18" x 0.5"       | A572-50  | Equal Angle | L5x5x5/8         | A36      |
|              |      |                        | (50 ksi) |             |                  | (36 ksi) |

# Tower Section Geometry (cont'd)

| Tower<br>Elevation<br>ft | Top Girt<br>Type | Top Girt<br>Size  | Top Girt<br>Grade | Bottom Girt<br>Type | Bottom Girt<br>Size | Bottom Girt<br>Grade |
|--------------------------|------------------|-------------------|-------------------|---------------------|---------------------|----------------------|
| T1 170'-160'             | Equal Angle      | L2 1/2x2 1/2x3/16 | A36<br>(36 ksi)   | Equal Angle         |                     | A36<br>(36 ksi)      |

|                        | Tower Section Geometry (cont'd) |                  |                  |                   |                    |                       |                     |
|------------------------|---------------------------------|------------------|------------------|-------------------|--------------------|-----------------------|---------------------|
| Tower<br>Elevation     | No.<br>of<br>Mid                | Mid Girt<br>Type | Mid Girt<br>Size | Mid Girt<br>Grade | Horizontal<br>Type | Horizontal<br>Size    | Horizontal<br>Grade |
| <i>ft</i><br>T9 20'-0' | Girts<br>None                   | Flat Bar         |                  | A36               | Double Equal       | 2L3 1/2x3 1/2x1/4x3/8 | A36                 |
| 1720-0                 | None                            | I lat Dal        |                  | (36 ksi)          | Angle              | 213 1/283 1/281/485/0 | (36 ksi)            |



Project

Client

# Tower Section Geometry (cont'd)

| Tower<br>Elevation     | Secondary<br>Horizontal Type | Secondary Horizontal<br>Size | Secondary<br>Horizontal<br>Grade | Inner Bracing<br>Type | Inner Bracing Size | Inner Bracing<br>Grade |
|------------------------|------------------------------|------------------------------|----------------------------------|-----------------------|--------------------|------------------------|
| <u>ft</u><br>T9 20'-0' | Equal Angle                  |                              | A36<br>(36 ksi)                  | Equal Angle           | L3x3x3/16          | A36<br>(36 ksi)        |

# Tower Section Geometry (cont'd)

| Tower<br>Elevation |          |                | Redundant<br>Type | Redundant<br>Size | K Factor |
|--------------------|----------|----------------|-------------------|-------------------|----------|
| ft                 |          |                |                   |                   |          |
| T9 20'-0'          | A36      | Horizontal (1) | Equal Angle       | L3x3x5/16         | 1        |
|                    | (36 ksi) | Diagonal (1)   | Equal Angle       | L3x3x1/4          | 1        |

# Tower Section Geometry (cont'd)

| Tower<br>Elevation | Gusset<br>Area<br>(per face) | Gusset<br>Thickness | Gusset Grade    | Adjust. Factor $A_f$ | Adjust.<br>Factor<br>A <sub>r</sub> | Weight Mult. | Double Angle<br>Stitch Bolt<br>Spacing<br>Diagonals | Double Angle<br>Stitch Bolt<br>Spacing<br>Horizontals | Double Angle<br>Stitch Bolt<br>Spacing<br>Redundants |
|--------------------|------------------------------|---------------------|-----------------|----------------------|-------------------------------------|--------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| ft                 | $ft^2$                       | in                  |                 |                      |                                     |              | in                                                  | in                                                    | in                                                   |
| T1 170'-160'       | 0.000                        | 0.375               | A36<br>(36 ksi) | 1.05                 | 1                                   | 1.05         | Mid-Pt                                              | Mid-Pt                                                | Mid-Pt                                               |
| T2 160'-140'       | 0.000                        | 0.375               | A36<br>(36 ksi) | 1.05                 | 1                                   | 1.05         | Mid-Pt                                              | Mid-Pt                                                | Mid-Pt                                               |
| T3 140'-120'       | 0.000                        | 0.375               | A36<br>(36 ksi) | 1.05                 | 1                                   | 1.05         | Mid-Pt                                              | Mid-Pt                                                | Mid-Pt                                               |
| T4 120'-100'       | 0.000                        | 0.625               | A36<br>(36 ksi) | 1.05                 | 1                                   | 1.05         | Mid-Pt                                              | Mid-Pt                                                | Mid-Pt                                               |
| T5 100'-80'        | 0.000                        | 0.625               | A36<br>(36 ksi) | 1.05                 | 1                                   | 1.05         | Mid-Pt                                              | Mid-Pt                                                | Mid-Pt                                               |
| T6 80'-60'         | 0.000                        | 0.625               | A36<br>(36 ksi) | 1.05                 | 1                                   | 1.05         | Mid-Pt                                              | Mid-Pt                                                | Mid-Pt                                               |
| T7 60'-40'         | 0.000                        | 0.625               | A36<br>(36 ksi) | 1.05                 | 1                                   | 1.05         | Mid-Pt                                              | Mid-Pt                                                | Mid-Pt                                               |
| T8 40'-20'         | 0.000                        | 0.625               | A36<br>(36 ksi) | 1.05                 | 1                                   | 1.05         | Mid-Pt                                              | Mid-Pt                                                | Mid-Pt                                               |
| T9 20'-0'          | 0.000                        | 0.625               | A36<br>(36 ksi) | 1.05                 | 1                                   | 1.05         | Mid-Pt                                              | 90.450                                                | Mid-Pt                                               |

# Tower Section Geometry (cont'd)

K Factors<sup>1</sup>

| tnxT          | 'ower |
|---------------|-------|
| <i>••••••</i> |       |

Page

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

| 100736.010.01.0001 - TRURO, MA (BU# 841273) | 5 of 39                               |
|---------------------------------------------|---------------------------------------|
| Project                                     | Date<br>14:41:12 09/21/22             |
| Client<br>Crown Castle                      | <b>Designed by</b><br>Nithish Acharya |

| Tower<br>Elevation | Calc<br>K<br>Single | Calc<br>K<br>Solid | Legs | X<br>Brace<br>Diags | K<br>Brace<br>Diags | Single<br>Diags | Girts | Horiz. | Sec.<br>Horiz. | Inner<br>Brace |
|--------------------|---------------------|--------------------|------|---------------------|---------------------|-----------------|-------|--------|----------------|----------------|
|                    | Angles              | Rounds             |      | X                   | X                   | X               | X     | X      | X              | X              |
| ft                 | Ū.                  |                    |      | Y                   | Y                   | Y               | Y     | Y      | Y              | Y              |
| T1 170'-160'       | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
|                    |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T2 160'-140'       | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
|                    |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T3 140'-120'       | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
|                    |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T4 120'-100'       | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
|                    |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T5 100'-80'        | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
|                    |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T6 80'-60'         | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
|                    |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T7 60'-40'         | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
|                    |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T8 40'-20'         | Yes                 | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
|                    |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
| T9 20'-0'          | No                  | No                 | 1    | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |
|                    |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1              | 1              |

<sup>1</sup>Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

### Tower Section Geometry (cont'd)

| Tower<br>Elevation<br>ft | Leg       |   | Diago     | ıal  | Top G     | irt  | Botton | ı Girt | Mid    | Girt | Long Ho | rizontal | Short Ho | rizontal |
|--------------------------|-----------|---|-----------|------|-----------|------|--------|--------|--------|------|---------|----------|----------|----------|
|                          | Net Width | U | Net Width | U    | Net Width | U    | Net    | U      | Net    | U    | Net     | U        | Net      | U        |
|                          | Deduct    |   | Deduct    |      | Deduct    |      | Width  |        | Width  |      | Width   |          | Width    |          |
|                          | in        |   | in        |      | in        |      | Deduct |        | Deduct |      | Deduct  |          | Deduct   |          |
|                          |           |   |           |      |           |      | in     |        | in     |      | in      |          | in       |          |
| T1 170'-160'             | 0.000     | 1 | 0.000     | 0.75 | 0.000     | 0.75 | 0.000  | 0.75   | 0.000  | 0.75 | 0.000   | 0.75     | 0.000    | 0.75     |
| T2 160'-140'             | 0.000     | 1 | 0.000     | 0.75 | 0.000     | 0.75 | 0.000  | 0.75   | 0.000  | 0.75 | 0.000   | 0.75     | 0.000    | 0.75     |
| T3 140'-120'             | 0.000     | 1 | 0.000     | 0.75 | 0.000     | 0.75 | 0.000  | 0.75   | 0.000  | 0.75 | 0.000   | 0.75     | 0.000    | 0.75     |
| T4 120'-100'             | 0.000     | 1 | 0.000     | 0.75 | 0.000     | 0.75 | 0.000  | 0.75   | 0.000  | 0.75 | 0.000   | 0.75     | 0.000    | 0.75     |
| T5 100'-80'              | 0.000     | 1 | 0.000     | 0.75 | 0.000     | 0.75 | 0.000  | 0.75   | 0.000  | 0.75 | 0.000   | 0.75     | 0.000    | 0.75     |
| T6 80'-60'               | 0.000     | 1 | 0.000     | 0.75 | 0.000     | 0.75 | 0.000  | 0.75   | 0.000  | 0.75 | 0.000   | 0.75     | 0.000    | 0.75     |
| T7 60'-40'               | 0.000     | 1 | 0.000     | 0.75 | 0.000     | 0.75 | 0.000  | 0.75   | 0.000  | 0.75 | 0.000   | 0.75     | 0.000    | 0.75     |
| T8 40'-20'               | 0.000     | 1 | 0.000     | 0.75 | 0.000     | 0.75 | 0.000  | 0.75   | 0.000  | 0.75 | 0.000   | 0.75     | 0.000    | 0.75     |
| T9 20'-0'                | 0.000     | 1 | 0.000     | 0.75 | 0.000     | 0.75 | 0.000  | 0.75   | 0.000  | 0.75 | 0.000   | 0.75     | 0.000    | 0.75     |

| Tower<br>Elevation<br>ft | Redund<br>Horizon   |      | Redund<br>Diagor    |      | Redund<br>Sub-Diag  |      | Redun<br>Sub-Hor |      | Redundan     | t Vertical | Redunda      | int Hip | Redunda<br>Diago |      |
|--------------------------|---------------------|------|---------------------|------|---------------------|------|------------------|------|--------------|------------|--------------|---------|------------------|------|
| jr                       | Net Width<br>Deduct | U    | Net Width<br>Deduct | U    | Net Width<br>Deduct | U    | Net<br>Width     | U    | Net<br>Width | U          | Net<br>Width | U       | Net<br>Width     | U    |
|                          | in                  |      | in                  |      | in                  |      | Deduct           |      | Deduct       |            | Deduct       |         | Deduct           |      |
|                          |                     |      |                     |      |                     |      | in               |      | in           |            | in           |         | in               |      |
| T1 170'-160'             | 0.000               | 0.75 | 0.000               | 0.75 | 0.000               | 0.75 | 0.000            | 0.75 | 0.000        | 0.75       | 0.000        | 0.75    | 0.000            | 0.75 |
| T2 160'-140'             | 0.000               | 0.75 | 0.000               | 0.75 | 0.000               | 0.75 | 0.000            | 0.75 | 0.000        | 0.75       | 0.000        | 0.75    | 0.000            | 0.75 |
| T3 140'-120'             | 0.000               | 0.75 | 0.000               | 0.75 | 0.000               | 0.75 | 0.000            | 0.75 | 0.000        | 0.75       | 0.000        | 0.75    | 0.000            | 0.75 |
| T4 120'-100'             | 0.000               | 0.75 | 0.000               | 0.75 | 0.000               | 0.75 | 0.000            | 0.75 | 0.000        | 0.75       | 0.000        | 0.75    | 0.000            | 0.75 |
| T5 100'-80'              | 0.000               | 0.75 | 0.000               | 0.75 | 0.000               | 0.75 | 0.000            | 0.75 | 0.000        | 0.75       | 0.000        | 0.75    | 0.000            | 0.75 |
| T6 80'-60'               | 0.000               | 0.75 | 0.000               | 0.75 | 0.000               | 0.75 | 0.000            | 0.75 | 0.000        | 0.75       | 0.000        | 0.75    | 0.000            | 0.75 |



Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

#### 6 of 39 Date 14:41:12 09/21/22 Designed by

Page

Nithish Acharya

| Tower<br>Elevation                    | Reduna<br>Horizoi                                      |                      | Redund<br>Diagor          |                      | Redund<br>Sub-Diag        |                      | Redur<br>Sub-Hor                                       |                      | Redundan                     | t Vertical           | Redundd                      | unt Hip              | Redunda<br>Diag                                        |                      |
|---------------------------------------|--------------------------------------------------------|----------------------|---------------------------|----------------------|---------------------------|----------------------|--------------------------------------------------------|----------------------|------------------------------|----------------------|------------------------------|----------------------|--------------------------------------------------------|----------------------|
| ft                                    | Net Width<br>Deduct<br>in                              | U                    | Net Width<br>Deduct<br>in | U                    | Net Width<br>Deduct<br>in | U                    | Net<br>Width<br>Deduct<br>in                           | U                    | Net<br>Width<br>Deduct<br>in | U                    | Net<br>Width<br>Deduct<br>in | U                    | Net<br>Width<br>Deduct<br>in                           | U                    |
| T7 60'-40'<br>T8 40'-20'<br>T9 20'-0' | $\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \end{array}$ | 0.75<br>0.75<br>0.75 | 0.000<br>0.000<br>0.000   | 0.75<br>0.75<br>0.75 | 0.000<br>0.000<br>0.000   | 0.75<br>0.75<br>0.75 | $\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \end{array}$ | 0.75<br>0.75<br>0.75 | 0.000<br>0.000<br>0.000      | 0.75<br>0.75<br>0.75 | 0.000<br>0.000<br>0.000      | 0.75<br>0.75<br>0.75 | $\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \end{array}$ | 0.75<br>0.75<br>0.75 |

### Tower Section Geometry (cont'd)

| Tower        | Leg        | Leg       |     | Diago     | nal | Top G     | irt | Bottom    | Girt | Mid G     | irt | Long Hori | izontal | Short Hor | izontal |
|--------------|------------|-----------|-----|-----------|-----|-----------|-----|-----------|------|-----------|-----|-----------|---------|-----------|---------|
| Elevation    | Connection |           |     | _         |     | _         |     |           |      |           |     |           |         |           |         |
| ft           | Type       |           |     |           |     |           |     |           |      |           |     |           |         |           |         |
|              |            | Bolt Size | No.  | Bolt Size | No. | Bolt Size | No.     | Bolt Size | No.     |
|              |            | in        |     | in        |     | in        |     | in        |      | in        |     | in        |         | in        |         |
| T1 170'-160' | Flange     | 1.000     | 4   | 0.625     | 1   | 0.625     | 1   | 0.000     | 0    | 0.625     | 0   | 0.000     | 0       | 0.625     | 0       |
|              | 8          | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |         | A325N     |         |
| T2 160'-140' | Flange     | 1.250     | 4   | 0.750     | 1   | 0.000     | 0   | 0.000     | 0    | 0.625     | 0   | 0.000     | 0       | 0.625     | 0       |
|              | U          | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |         | A325N     |         |
| T3 140'-120' | Flange     | 1.250     | 6   | 1.000     | 1   | 0.000     | 0   | 0.000     | 0    | 0.625     | 0   | 0.000     | 0       | 0.625     | 0       |
|              | e          | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |         | A325N     |         |
| T4 120'-100' | Flange     | 1.375     | 6   | 1.000     | 1   | 0.000     | 0   | 0.000     | 0    | 0.625     | 0   | 0.000     | 0       | 0.625     | 0       |
|              | e          | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |         | A325N     |         |
| T5 100'-80'  | Flange     | 1.375     | 6   | 1.125     | 1   | 0.000     | 0   | 0.000     | 0    | 0.625     | 0   | 0.000     | 0       | 0.625     | 0       |
|              | e          | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |         | A325N     |         |
| T6 80'-60'   | Flange     | 1.500     | 6   | 1.125     | 1   | 0.000     | 0   | 0.000     | 0    | 0.625     | 0   | 0.000     | 0       | 0.625     | 0       |
|              | e          | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |         | A325N     |         |
| T7 60'-40'   | Flange     | 1.500     | 8   | 1.250     | 1   | 0.000     | 0   | 0.000     | 0    | 0.625     | 0   | 0.000     | 0       | 0.625     | 0       |
|              | U          | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |         | A325N     |         |
| T8 40'-20'   | Flange     | 1.500     | 8   | 1.250     | 1   | 0.000     | 0   | 0.000     | 0    | 0.625     | 0   | 0.000     | 0       | 0.625     | 0       |
|              | C          | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |         | A325N     |         |
| T9 20'-0'    | Flange     | 0.000     | 0   | 1.000     | 2   | 0.000     | 0   | 0.000     | 0    | 0.625     | 0   | 1.000     | 2       | 0.625     | 0       |
|              | e          | A36       |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |         | A325N     |         |

### Tower Section Geometry (cont'd)

| Tower<br>Elevation | Reduna<br>Horizoi |     |           | Redundant<br>Diagonal |           | lant<br>gonal | Redun<br>Sub-Hor |     | Redundan  | Vertical | l Redundant Hip |     | Redundant Hi<br>Diagonal |     |
|--------------------|-------------------|-----|-----------|-----------------------|-----------|---------------|------------------|-----|-----------|----------|-----------------|-----|--------------------------|-----|
| ft                 |                   |     |           |                       |           |               |                  |     |           |          |                 |     |                          |     |
|                    | Bolt Size         | No. | Bolt Size | No.                   | Bolt Size | No.           | Bolt Size        | No. | Bolt Size | No.      | Bolt Size       | No. | Bolt Size                | No. |
|                    | in                |     | in        |                       | in        |               | in               |     | in        |          | in              |     | in                       |     |
| T1 170'-160'       | 0.625             | 0   | 0.625     | 0                     | 0.625     | 0             | 0.625            | 0   | 0.625     | 0        | 0.625           | 0   | 0.625                    | 0   |
|                    | A325N             |     | A325N     |                       | A325N     |               | A325N            |     | A325N     |          | A325N           |     | A325N                    |     |
| T2 160'-140'       | 0.625             | 0   | 0.625     | 0                     | 0.625     | 0             | 0.625            | 0   | 0.625     | 0        | 0.625           | 0   | 0.625                    | 0   |
|                    | A325N             |     | A325N     |                       | A325N     |               | A325N            |     | A325N     |          | A325N           |     | A325N                    |     |
| T3 140'-120'       | 0.625             | 0   | 0.625     | 0                     | 0.625     | 0             | 0.625            | 0   | 0.625     | 0        | 0.625           | 0   | 0.625                    | 0   |
|                    | A325N             |     | A325N     |                       | A325N     |               | A325N            |     | A325N     |          | A325N           |     | A325N                    |     |
| T4 120'-100'       | 0.625             | 0   | 0.625     | 0                     | 0.625     | 0             | 0.625            | 0   | 0.625     | 0        | 0.625           | 0   | 0.625                    | 0   |
|                    | A325N             |     | A325N     |                       | A325N     |               | A325N            |     | A325N     |          | A325N           |     | A325N                    |     |
| T5 100'-80'        | 0.625             | 0   | 0.625     | 0                     | 0.625     | 0             | 0.625            | 0   | 0.625     | 0        | 0.625           | 0   | 0.625                    | 0   |
|                    | A325N             |     | A325N     |                       | A325N     |               | A325N            |     | A325N     |          | A325N           |     | A325N                    |     |



Job 100736.010.01.0001 - TRURO, MA (BU# 841273) Page 7 of 39

Date

Project

Client

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

#### Designed by Nithish Acharya

14:41:12 09/21/22

| Tower<br>Elevation<br>ft | Reduna<br>Horizoi |     | Redund<br>Diago |     | Redund<br>Sub-Dia |     | Redun<br>Sub-Hor |     | Redundant       | Vertical | Redundd         | ınt Hip | Redunda<br>Diago | 1   |
|--------------------------|-------------------|-----|-----------------|-----|-------------------|-----|------------------|-----|-----------------|----------|-----------------|---------|------------------|-----|
| 5                        | Bolt Size<br>in   | No. | Bolt Size<br>in | No. | Bolt Size<br>in   | No. | Bolt Size<br>in  | No. | Bolt Size<br>in | No.      | Bolt Size<br>in | No.     | Bolt Size<br>in  | No. |
| T6 80'-60'               | 0.625<br>A325N    | 0   | 0.625<br>A325N  | 0   | 0.625<br>A325N    | 0   | 0.625<br>A325N   | 0   | 0.625<br>A325N  | 0        | 0.625<br>A325N  | 0       | 0.625<br>A325N   | 0   |
| T7 60'-40'               | 0.625<br>A325N    | 0   | 0.625<br>A325N  | 0   | 0.625<br>A325N    | 0   | 0.625<br>A325N   | 0   | 0.625<br>A325N  | 0        | 0.625<br>A325N  | 0       | 0.625<br>A325N   | 0   |
| T8 40'-20'               | 0.625<br>A325N    | 0   | 0.625<br>A325N  | 0   | 0.625<br>A325N    | 0   | 0.625<br>A325N   | 0   | 0.625<br>A325N  | 0        | 0.625<br>A325N  | 0       | 0.625<br>A325N   | 0   |
| T9 20'-0'                | 1.000<br>A325N    | 1   | 1.000<br>A325N  | 1   | 0.625<br>A325N    | 0   | 0.625<br>A325N   | 0   | 0.625<br>A325N  | 0        | 0.625<br>A325N  | 0       | 0.625<br>A325N   | 0   |

### Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description                   | Face<br>or<br>Leg | Allow<br>Shield | Exclude<br>From<br>Torque<br>Calculation | Component<br>Type | Placement<br>ft | Face<br>Offset<br>in | Lateral<br>Offset<br>(Frac FW) | #  | #<br>Per<br>Row | Clear<br>Spacing<br>in | Width or<br>Diameter<br>in | Perimeter<br>in | Weight<br>klf |
|-------------------------------|-------------------|-----------------|------------------------------------------|-------------------|-----------------|----------------------|--------------------------------|----|-----------------|------------------------|----------------------------|-----------------|---------------|
| FSJ4-50B(1/2"<br>)<br>*       | А                 | No              | No                                       | Ar (CaAa)         | 170' - 0'       | -6.000               | 0.4                            | 1  | 1               | 0.850<br>0.750         | 0.520                      |                 | 0.000         |
| AL5-50(7/8)                   | А                 | No              | No                                       | Ar (CaAa)         | 104' - 0'       | -8.000               | 0.44                           | 10 | 10              | 0.850<br>0.750         | 1.100                      |                 | 0.000         |
| AVA7-50(1-5/<br>8)<br>*       | А                 | No              | No                                       | Ar (CaAa)         | 160' - 0'       | -6.000               | 0.46                           | 1  | 1               | 0.850<br>0.750         | 2.010                      |                 | 0.001         |
| LDF6-50A(1-<br>1/4")<br>*     | Α                 | No              | No                                       | Ar (CaAa)         | 151' - 0'       | -9.000               | 0.4                            | 2  | 1               | 0.850<br>0.750         | 1.550                      |                 | 0.001         |
| EW52(ELLIP<br>TICAL)<br>*     | Α                 | No              | No                                       | Ar (CaAa)         | 139' - 0'       | -12.000              | 0.4                            | 1  | 1               | 0.850<br>0.750         | 2.250                      |                 | 0.001         |
| LDF2-50(3/8")                 | А                 | No              | No                                       | Ar (CaAa)         | 104' - 0'       | -6.500               | 0.43                           | 8  | 8               | 0.400                  | 0.440                      |                 | 0.000         |
| T-Brackets<br>(Af)<br>*       | А                 | No              | No                                       | Af (CaAa)         | 150' - 0'       | -6.000               | 0.45                           | 1  | 1               | 1.000                  | 1.000                      |                 | 0.008         |
| LDF7-50A(1-<br>5/8")          | В                 | No              | No                                       | Ar (CaAa)         | 145' - 0'       | -16.000              | 0.4                            | 12 | 2               | 0.850<br>0.750         | 1.980                      |                 | 0.001         |
| WR-VG82ST-<br>BRDA( 5/8")     | В                 | No              | No                                       | Ar (CaAa)         | 145' - 0'       | -13.000              | 0.39                           | 4  | 1               | 0.750                  | 0.645                      |                 | 0.000         |
| LDF2-50(3/8")                 | В                 | No              | No                                       | Ar (CaAa)         | 145' - 0'       | -11.000              | 0.39                           | 2  | 1               | 0.750                  | 0.440                      |                 | 0.000         |
| T-Brackets<br>(Af)<br>*       | В                 | No              | No                                       | Af (CaAa)         | 155' - 0'       | -7.000               | 0.43                           | 1  | 1               | 1.000                  | 1.000                      |                 | 0.008         |
| CU12PSM9P6<br>XXX(1-1/2)<br>* | В                 | No              | No                                       | Ar (CaAa)         | 122' - 0'       | -16.000              | 0.42                           | 1  | 1               | 0.850<br>0.750         | 1.600                      |                 | 0.002         |
| LDF5-50A(7/<br>8")            | С                 | No              | No                                       | Ar (CaAa)         | 96' - 0'        | 0.000                | -0.03                          | 6  | 6               | $0.850 \\ 0.750$       | 1.090                      |                 | 0.000         |
| C4006L-NFN<br>F(1-1/4")       | С                 | No              | No                                       | Ar (CaAa)         | 96' - 0'        | 0.000                | 0.01                           | 3  | 3               | 0.850<br>0.750         | 1.280                      |                 | 0.001         |
| 84080298(3́/8"                | С                 | No              | No                                       | Ar (CaAa)         | 96' - 0'        | 0.000                | 0.03                           | 2  | 2               | 0.500                  | 0.276                      |                 | 0.000         |
| Feedline<br>Ladder (Af)       | С                 | No              | No                                       | Af (CaAa)         | 100' - 0'       | 0.000                | 0                              | 1  | 1               | 3.000                  | 3.000                      |                 | 0.008         |

| tnxTower |
|----------|
|          |

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

14:41:12 09/21/22 Designed by

Nithish Acharya

| Description                               | Face<br>or | Allow<br>Shield | Exclude<br>From       | Component<br>Type | Placement | Face<br>Offset | Lateral<br>Offset | #  | #<br>Per | Clear<br>Spacing | Width or<br>Diameter | Perimeter | Weight |
|-------------------------------------------|------------|-----------------|-----------------------|-------------------|-----------|----------------|-------------------|----|----------|------------------|----------------------|-----------|--------|
|                                           | Leg        |                 | Torque<br>Calculation | 51                | ft        | in             | (Frac FW)         |    | Row      | in               | in                   | in        | klf    |
| LDF7-50A(1-<br>5/8")                      | С          | No              | No                    | Ar (CaAa)         | 130' - 0' | -16.000        | 0.42              | 14 | 8        | 0.500            | 1.980                |           | 0.001  |
| LDF7-50A(1-<br>5/8")<br>*                 | С          | No              | No                    | Ar (CaAa)         | 130' - 0' | -11.000        | 0.42              | 5  | 2        | 0.500            | 1.980                |           | 0.001  |
| HB158-21U6S<br>24-xxM_TMO<br>(1-5/8)<br>* | С          | No              | No                    | Ar (CaAa)         | 168' - 0' | -11.000        | 0.42              | 3  | 3        | 0.850<br>0.750   | 1.996                |           | 0.003  |
| LDF4-50A(1/<br>2")                        | С          | No              | No                    | Ar (CaAa)         | 87' - 71' | -5.000         | 0.43              | 1  | 1        | 0.500            | 0.630                |           | 0.000  |
| LDF4-50A(1/<br>2")                        | С          | No              | No                    | Ar (CaAa)         | 71' - 0'  | -5.000         | 0.43              | 2  | 1        | 0.500            | 0.630                |           | 0.000  |
| T-Brackets<br>(Af)<br>*                   | С          | No              | No                    | Af (CaAa)         | 169' - 0' | -7.000         | 0.43              | 1  | 1        | 1.000            | 1.000                |           | 0.008  |
| Thin Flat Bar<br>Climbing<br>Ladder       | В          | No              | No                    | Af (CaAa)         | 170' - 0' | 0.000          | 0                 | 1  | 1        | 2.000            | 2.000                |           | 0.004  |
| Safety Line<br>3/8<br>*                   | В          | No              | No                    | Ar (CaAa)         | 170' - 0' | 1.000          | 0.01              | 1  | 1        | 0.375            | 0.375                |           | 0.000  |
| *                                         |            |                 |                       |                   |           |                |                   |    |          |                  |                      |           |        |

### Feed Line/Linear Appurtenances - Entered As Area

| Description | Face<br>or | Allow<br>Shield | Exclude<br>From       | Component<br>Type | Placement | Total<br>Number | $C_A A_A$ | Weight |
|-------------|------------|-----------------|-----------------------|-------------------|-----------|-----------------|-----------|--------|
|             | Leg        |                 | Torque<br>Calculation |                   | ft        |                 | $ft^2/ft$ | klf    |
| *           |            |                 | Culculution           |                   |           |                 |           |        |
| *           |            |                 |                       |                   |           |                 |           |        |
| *           |            |                 |                       |                   |           |                 |           |        |

### Feed Line/Linear Appurtenances Section Areas

| Tower   | Tower     | Face | $A_R$  | $A_F$  | $C_A A_A$ | $C_A A_A$ | Weight |
|---------|-----------|------|--------|--------|-----------|-----------|--------|
| Section | Elevation |      | . 2    | • 2    | In Face   | Out Face  |        |
|         | ft        |      | $ft^2$ | $ft^2$ | $ft^2$    | $ft^2$    | K      |
| T1      | 170'-160' | А    | 0.000  | 0.000  | 0.520     | 0.000     | 0.001  |
|         |           | В    | 0.000  | 0.000  | 3.708     | 0.000     | 0.042  |
|         |           | С    | 0.000  | 0.000  | 6.290     | 0.000     | 0.136  |
| T2      | 160'-140' | А    | 0.000  | 0.000  | 10.137    | 0.000     | 0.115  |
|         |           | В    | 0.000  | 0.000  | 23.527    | 0.000     | 0.267  |
|         |           | С    | 0.000  | 0.000  | 15.309    | 0.000     | 0.318  |
| T3      | 140'-120' | А    | 0.000  | 0.000  | 18.868    | 0.000     | 0.222  |
|         |           | В    | 0.000  | 0.000  | 65.510    | 0.000     | 0.482  |
|         |           | С    | 0.000  | 0.000  | 52.929    | 0.000     | 0.474  |
| T4      | 120'-100' | А    | 0.000  | 0.000  | 24.901    | 0.000     | 0.236  |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

14:41:12 09/21/22

| Tower   | Tower     | Face | $A_R$  | $A_F$  | $C_A A_A$ | $C_A A_A$ | Weight |
|---------|-----------|------|--------|--------|-----------|-----------|--------|
| Section | Elevation |      |        |        | In Face   | Out Face  | -      |
|         | ft        |      | $ft^2$ | $ft^2$ | $ft^2$    | $ft^2$    | K      |
|         |           | В    | 0.000  | 0.000  | 68.390    | 0.000     | 0.524  |
|         |           | С    | 0.000  | 0.000  | 90.549    | 0.000     | 0.630  |
| T5      | 100'-80'  | А    | 0.000  | 0.000  | 48.133    | 0.000     | 0.288  |
|         |           | В    | 0.000  | 0.000  | 68.390    | 0.000     | 0.524  |
|         |           | С    | 0.000  | 0.000  | 118.480   | 0.000     | 0.858  |
| T6      | 80'-60'   | А    | 0.000  | 0.000  | 48.133    | 0.000     | 0.288  |
|         |           | В    | 0.000  | 0.000  | 68.390    | 0.000     | 0.524  |
|         |           | С    | 0.000  | 0.000  | 124.364   | 0.000     | 0.877  |
| T7      | 60'-40'   | А    | 0.000  | 0.000  | 48.133    | 0.000     | 0.288  |
|         |           | В    | 0.000  | 0.000  | 68.390    | 0.000     | 0.524  |
|         |           | С    | 0.000  | 0.000  | 124.931   | 0.000     | 0.878  |
| T8      | 40'-20'   | А    | 0.000  | 0.000  | 48.133    | 0.000     | 0.288  |
|         |           | В    | 0.000  | 0.000  | 68.390    | 0.000     | 0.524  |
|         |           | С    | 0.000  | 0.000  | 124.931   | 0.000     | 0.878  |
| Т9      | 20'-0'    | А    | 0.000  | 0.000  | 48.133    | 0.000     | 0.288  |
|         |           | В    | 0.000  | 0.000  | 68.390    | 0.000     | 0.524  |
|         |           | С    | 0.000  | 0.000  | 124.931   | 0.000     | 0.878  |

### Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower   | Tower     | Face | Ice       | $A_R$  | $A_F$  | $C_A A_A$ | $C_A A_A$       | Weight |
|---------|-----------|------|-----------|--------|--------|-----------|-----------------|--------|
| Section | Elevation | or   | Thickness | _      |        | In Face   | Out Face        |        |
|         | ft        | Leg  | in        | $ft^2$ | $ft^2$ | $ft^2$    | ft <sup>2</sup> | K      |
| T1      | 170'-160' | А    | 2.026     | 0.000  | 0.000  | 4.572     | 0.000           | 0.064  |
|         |           | В    |           | 0.000  | 0.000  | 11.813    | 0.000           | 0.225  |
|         |           | С    |           | 0.000  | 0.000  | 18.354    | 0.000           | 0.386  |
| T2      | 160'-140' | А    | 2.007     | 0.000  | 0.000  | 40.042    | 0.000           | 0.719  |
|         |           | В    |           | 0.000  | 0.000  | 56.194    | 0.000           | 1.203  |
|         |           | С    |           | 0.000  | 0.000  | 44.249    | 0.000           | 0.913  |
| Т3      | 140'-120' | А    | 1.978     | 0.000  | 0.000  | 67.813    | 0.000           | 1.248  |
|         |           | В    |           | 0.000  | 0.000  | 131.824   | 0.000           | 2.758  |
|         |           | С    |           | 0.000  | 0.000  | 92.118    | 0.000           | 1.804  |
| T4      | 120'-100' | А    | 1.946     | 0.000  | 0.000  | 84.771    | 0.000           | 1.458  |
|         |           | В    |           | 0.000  | 0.000  | 140.634   | 0.000           | 2.903  |
|         |           | С    |           | 0.000  | 0.000  | 139.502   | 0.000           | 2.671  |
| T5      | 100'-80'  | А    | 1.907     | 0.000  | 0.000  | 151.758   | 0.000           | 2.306  |
|         |           | В    |           | 0.000  | 0.000  | 139.229   | 0.000           | 2.841  |
|         |           | С    |           | 0.000  | 0.000  | 224.133   | 0.000           | 3.903  |
| T6      | 80'-60'   | А    | 1.860     | 0.000  | 0.000  | 150.081   | 0.000           | 2.240  |
|         |           | В    |           | 0.000  | 0.000  | 137.509   | 0.000           | 2.766  |
|         |           | С    |           | 0.000  | 0.000  | 248.478   | 0.000           | 4.148  |
| Τ7      | 60'-40'   | А    | 1.798     | 0.000  | 0.000  | 147.901   | 0.000           | 2.157  |
|         |           | В    |           | 0.000  | 0.000  | 135.273   | 0.000           | 2.671  |
|         |           | С    |           | 0.000  | 0.000  | 249.035   | 0.000           | 4.076  |
| T8      | 40'-20'   | А    | 1.709     | 0.000  | 0.000  | 144.734   | 0.000           | 2.038  |
|         |           | В    |           | 0.000  | 0.000  | 132.023   | 0.000           | 2.536  |
|         |           | С    |           | 0.000  | 0.000  | 244.094   | 0.000           | 3.898  |
| T9      | 20'-0'    | А    | 1.531     | 0.000  | 0.000  | 138.462   | 0.000           | 1.811  |
|         |           | В    |           | 0.000  | 0.000  | 125.581   | 0.000           | 2.281  |
|         |           | С    |           | 0.000  | 0.000  | 234.306   | 0.000           | 3.558  |

### Feed Line Center of Pressure

| ob                                          | Page |
|---------------------------------------------|------|
| 100736.010.01.0001 - TRURO, MA (BU# 841273) |      |

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

#### 14:41:12 09/21/22 Designed by Nithish Acharya

10 of 39

Date

| Section | Elevation | $CP_X$ | $CP_Z$ | $CP_X$ | $CP_Z$ |
|---------|-----------|--------|--------|--------|--------|
|         |           |        |        | Ice    | Ice    |
|         | ft        | in     | in     | in     | in     |
| T1      | 170'-160' | -2.958 | -0.142 | -3.401 | -1.493 |
| T2      | 160'-140' | 0.270  | -1.667 | 0.264  | -4.129 |
| T3      | 140'-120' | -0.577 | 1.572  | 1.863  | -1.702 |
| T4      | 120'-100' | -6.122 | 1.875  | -1.719 | -1.582 |
| T5      | 100'-80'  | -5.591 | -2.833 | -1.798 | -5.243 |
| T6      | 80'-60'   | -5.994 | -2.445 | -2.721 | -4.169 |
| T7      | 60'-40'   | -6.210 | -2.388 | -3.026 | -4.238 |
| T8      | 40'-20'   | -6.443 | -2.457 | -3.258 | -4.570 |
| Т9      | 20'-0'    | -6.334 | -2.406 | -3.417 | -4.751 |

Project

Client

### **Shielding Factor Ka**

| Tower      | Feed Line  | Description                      | Feed Line          | $K_a$  | $K_a$  |
|------------|------------|----------------------------------|--------------------|--------|--------|
| Section    | Record No. | , A                              | Segment Elev.      | No Ïce | Ice    |
| T1         | 1          | FSJ4-50B(1/2")                   | 160.00 -           | 0.6000 | 0.6000 |
|            |            |                                  | 170.00             |        |        |
| T1         | 32         | HB158-21U6S24-xxM_TMO            | 160.00 -           | 0.6000 | 0.6000 |
|            |            | (1-5/8)                          | 168.00             |        |        |
| T1         | 36         | T-Brackets (Af)                  | 160.00 -           | 0.6000 | 0.6000 |
| <b>T</b> 1 | 20         |                                  | 169.00             | 0 (000 | 0.0000 |
| T1         | 38         | Thin Flat Bar Climbing<br>Ladder | 160.00 -           | 0.6000 | 0.6000 |
| Т1         | 39         | Safety Line 3/8                  | 170.00<br>160.00 - | 0.6000 | 0.6000 |
| 11         | 39         | Safety Lille 3/8                 | 170.00             | 0.0000 | 0.0000 |
| Т2         | 1          | FSJ4-50B(1/2")                   | 140.00 -           | 0.6000 | 0.6000 |
| 12         | 1          | 1554 566(1/2)                    | 160.00             | 0.0000 | 0.0000 |
| Т2         | 6          | AVA7-50(1-5/8)                   | 140.00 -           | 0.6000 | 0.6000 |
|            | -          |                                  | 160.00             |        |        |
| T2         | 8          | LDF6-50A(1-1/4")                 | 140.00 -           | 0.6000 | 0.6000 |
|            |            |                                  | 151.00             |        |        |
| T2         | 13         | T-Brackets (Af)                  | 140.00 -           | 0.6000 | 0.6000 |
|            |            |                                  | 150.00             |        |        |
| T2         | 15         | LDF7-50A(1-5/8")                 | 140.00 -           | 0.6000 | 0.6000 |
| Т2         | 16         |                                  | 145.00             | 0.6000 | 0.6000 |
| 12         | 10         | WR-VG82ST-BRDA( 5/8")            | 140.00 -<br>145.00 | 0.6000 | 0.6000 |
| T2         | 18         | LDF2-50(3/8")                    | 140.00 -           | 0.6000 | 0.6000 |
| 12         | 10         | EDI 2 50(5/6 )                   | 145.00             | 0.0000 | 0.0000 |
| Т2         | 19         | T-Brackets (Af)                  | 140.00 -           | 0.6000 | 0.6000 |
|            | -          |                                  | 155.00             |        |        |
| T2         | 32         | HB158-21U6S24-xxM_TMO            | 140.00 -           | 0.6000 | 0.6000 |
|            |            | (1-5/8)                          | 160.00             |        |        |
| T2         | 36         | T-Brackets (Af)                  | 140.00 -           | 0.6000 | 0.6000 |
|            |            |                                  | 160.00             |        |        |
| T2         | 38         | Thin Flat Bar Climbing           | 140.00 -           | 0.6000 | 0.6000 |
| т.         | 20         | Ladder                           | 160.00             | 0 (000 | 0 (000 |
| T2         | 39         | Safety Line 3/8                  | 140.00 -           | 0.6000 | 0.6000 |
| Т3         | 1          | FSJ4-50B(1/2")                   | 160.00<br>120.00 - | 0.6000 | 0.6000 |
| 15         | 1          | $1^{3}3^{-3}00(1/2)$             | 140.00             | 0.0000 | 0.0000 |
| Т3         | 6          | AVA7-50(1-5/8)                   | 120.00 -           | 0.6000 | 0.6000 |
| 15         | Ũ          |                                  | 140.00             | 0.0000 | 0.0000 |
| Т3         | 8          | LDF6-50A(1-1/4")                 | 120.00 -           | 0.6000 | 0.6000 |
|            |            |                                  | 140.00             |        |        |
| Т3         | 10         | EW52(ELLIPTICAL)                 | 120.00 -           | 0.6000 | 0.6000 |



Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

| Tower    | Feed Line  | Description                                         | Feed Line                      | K <sub>a</sub>   | $K_a$            |
|----------|------------|-----------------------------------------------------|--------------------------------|------------------|------------------|
| Section  | Record No. |                                                     | Segment Elev.                  | No Ice           | Ice              |
| Т3       | 13         | T-Brackets (Af)                                     | 139.00<br>120.00 -             | 0.6000           | 0.6000           |
| Т3       | 15         | LDF7-50A(1-5/8")                                    | 140.00<br>120.00 -<br>140.00   | 0.6000           | 0.6000           |
| Т3       | 16         | WR-VG82ST-BRDA( 5/8")                               | 120.00 -<br>140.00             | 0.6000           | 0.6000           |
| Т3       | 18         | LDF2-50(3/8")                                       | 120.00 -<br>140.00             | 0.6000           | 0.6000           |
| Т3       | 19         | T-Brackets (Af)                                     | 120.00 -<br>140.00             | 0.6000           | 0.6000           |
| T3       | 21         | CU12PSM9P6XXX(1-1/2)                                | 120.00 -<br>122.00             | 0.6000           | 0.6000           |
| T3       | 28         | LDF7-50A(1-5/8")                                    | 120.00 -<br>130.00             | 0.6000           | 0.6000           |
| T3<br>T3 | 29<br>32   | LDF7-50A(1-5/8")<br>HB158-21U6S24-xxM TMO           | 120.00 -<br>130.00<br>120.00 - | 0.6000<br>0.6000 | 0.6000<br>0.6000 |
| T3       | 32         | (1-5/8)<br>T-Brackets (Af)                          | 120.00 -<br>140.00<br>120.00 - | 0.6000           | 0.6000           |
| T3       | 38         | Thin Flat Bar Climbing                              | 140.00<br>120.00 -             | 0.6000           | 0.6000           |
| Т3       | 39         | Ladder<br>Safety Line 3/8                           | 140.00<br>120.00 -             | 0.6000           | 0.6000           |
| T4       | 1          | FSJ4-50B(1/2")                                      | 140.00<br>100.00 -             | 0.6000           | 0.6000           |
| T4       | 4          | AL5-50(7/8)                                         | 120.00<br>100.00 -<br>104.00   | 0.6000           | 0.6000           |
| T4       | 6          | AVA7-50(1-5/8)                                      | 100.00 -<br>120.00             | 0.6000           | 0.6000           |
| T4       | 8          | LDF6-50A(1-1/4")                                    | 100.00 -<br>120.00             | 0.6000           | 0.6000           |
| T4       | 10         | EW52(ELLIPTICAL)                                    | 100.00 -<br>120.00             | 0.6000           | 0.6000           |
| T4<br>T4 | 12         | LDF2-50(3/8")<br>T-Brackets (Af)                    | 100.00 -<br>104.00<br>100.00 - | 0.6000<br>0.6000 | 0.6000<br>0.6000 |
| T4       | 15         | LDF7-50A(1-5/8")                                    | 120.00<br>100.00 -             | 0.6000           | 0.6000           |
| T4       | 16         | WR-VG82ST-BRDA( 5/8")                               | 120.00<br>100.00 -             | 0.6000           | 0.6000           |
| T4       | 18         | LDF2-50(3/8")                                       | 120.00<br>100.00 -             | 0.6000           | 0.6000           |
| T4       | 19         | T-Brackets (Af)                                     | 120.00<br>100.00 -<br>120.00   | 0.6000           | 0.6000           |
| T4       | 21         | CU12PSM9P6XXX(1-1/2)                                | 120.00<br>100.00 -<br>120.00   | 0.6000           | 0.6000           |
| T4       | 28         | LDF7-50A(1-5/8")                                    | 100.00 -<br>120.00             | 0.6000           | 0.6000           |
| T4       | 29         | LDF7-50A(1-5/8")                                    | 100.00 -<br>120.00             | 0.6000           | 0.6000           |
| T4       | 32         | HB158-21U6S24-xxM_TMO<br>(1-5/8)                    | 100.00 -<br>120.00             | 0.6000           | 0.6000           |
| T4       | 36         | T-Brackets (Af)                                     | 100.00 -<br>120.00             | 0.6000           | 0.6000           |
| T4<br>T4 | 38<br>39   | Thin Flat Bar Climbing<br>Ladder<br>Safety Line 3/8 | 100.00 -<br>120.00<br>100.00 - | 0.6000<br>0.6000 | 0.6000<br>0.6000 |
| 14<br>T5 | 39<br>1    | FSJ4-50B(1/2")                                      | 120.00                         | 0.6000           | 0.6000           |



Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

| Tower     | Feed Line  | Description                          | Feed Line                      | Ka                 | $K_a$              |
|-----------|------------|--------------------------------------|--------------------------------|--------------------|--------------------|
| Section   | Record No. | Description                          | Segment Elev.                  | No Ice             | Ice                |
| T5        | 4          | AL5-50(7/8)                          | 80.00 - 100.00                 | 0.6000             | 0.6000             |
| T5        | 6          | AVA7-50(1-5/8)                       |                                | 0.6000             | 0.6000             |
| T5        | 8          | LDF6-50A(1-1/4")                     | 80.00 - 100.00                 | 0.6000             | 0.6000             |
| T5        | 10         | EW52(ELLIPTICAL)                     |                                | 0.6000             | 0.6000             |
| T5        | 12         | LDF2-50(3/8")                        |                                | 0.6000             | 0.6000             |
| T5        | 13         | T-Brackets (Af)                      |                                | 0.6000             | 0.6000             |
| T5        | 15         | LDF7-50A(1-5/8")                     | 80.00 - 100.00                 | 0.6000             | 0.6000             |
| T5        | 16         | WR-VG82ST-BRDA( 5/8")                | 80.00 - 100.00                 | 0.6000             | 0.6000             |
| Т5        | 18         | LDF2-50(3/8")                        |                                | 0.6000             | 0.6000             |
| Т5        | 19         | T-Brackets (Af)                      |                                | 0.6000             | 0.6000             |
| Т5        | 21         | CU12PSM9P6XXX(1-1/2)                 | 80.00 - 100.00                 | 0.6000             | 0.6000             |
| T5        | 23         | LDF5-50A(7/8")                       | 80.00 - 96.00                  | 0.6000             | 0.6000             |
| T5        | 24         | C4006L-NFNF(1-1/4")                  | 80.00 - 96.00                  | 0.6000             | 0.6000             |
| T5        | 25         | 84080298(3/8")                       | 80.00 - 96.00                  | 0.6000             | 0.6000             |
| T5        | 26         | Feedline Ladder (Af)                 |                                | 0.6000             | 0.6000             |
| T5        | 28         | LDF7-50A(1-5/8")                     | 80.00 - 100.00                 | 0.6000             | 0.6000             |
| T5        | 29         | LDF7-50A(1-5/8")                     | 80.00 - 100.00                 | 0.6000             | 0.6000             |
| T5        | 32         | HB158-21U6S24-xxM_TMO                | 80.00 - 100.00                 | 0.6000             | 0.6000             |
|           |            | (1-5/8)                              |                                | 0                  | 0 - 50 - 5         |
| T5        | 34         | LDF4-50A(1/2")                       | 80.00 - 87.00                  | 0.6000             | 0.6000             |
| T5        | 36         | T-Brackets (Af)                      |                                | 0.6000             | 0.6000             |
| T5        | 38         | Thin Flat Bar Climbing               | 80.00 - 100.00                 | 0.6000             | 0.6000             |
| <b>77</b> | 20         | Ladder                               | 00.00 100.00                   | 0 (000             | 0.000              |
| T5        | 39         | Safety Line 3/8                      | 80.00 - 100.00                 | 0.6000             | 0.6000             |
| T6        | 1          | FSJ4-50B(1/2")                       | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6<br>T6  | 4          | AL5-50(7/8)<br>AVA7-50(1-5/8)        | 60.00 - 80.00                  | $0.6000 \\ 0.6000$ | 0.6000             |
| 16<br>T6  | 8          |                                      | 60.00 - 80.00<br>60.00 - 80.00 | 0.6000             | $0.6000 \\ 0.6000$ |
| T6        | 10         | LDF6-50A(1-1/4")<br>EW52(ELLIPTICAL) | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 10         | LDF2-50(3/8")                        | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 12         | T-Brackets (Af)                      | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 15         | LDF7-50A(1-5/8")                     | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 16         | WR-VG82ST-BRDA( 5/8")                | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 18         | LDF2-50(3/8")                        | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 19         | T-Brackets (Af)                      | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| Т6        | 21         | CU12PSM9P6XXX(1-1/2)                 | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| Т6        | 23         | LDF5-50A(7/8")                       | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 24         | C4006L-NFNF(1-1/4")                  | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 25         | 84080298(3/8")                       | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 26         | Feedline Ladder (Af)                 | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 28         | LDF7-50A(1-5/8")                     | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| Т6        | 29         | LDF7-50A(1-5/8")                     | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| Т6        | 32         | HB158-21U6S24-xxM_TMO                | 60.00 - 80.00                  | 0.6000             | 0.6000             |
|           |            | (1-5/8)                              | 71.00.00.00                    | 0 (000             | 0 (000             |
| T6        | 34         | LDF4-50A(1/2")                       | 71.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 35         | LDF4-50A(1/2")                       | 60.00 - 71.00                  | 0.6000             | 0.6000             |
| T6<br>T6  | 36<br>38   | T-Brackets (Af)                      | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T6        | 38         | Thin Flat Bar Climbing<br>Ladder     | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| Т6        | 39         | Safety Line 3/8                      | 60.00 - 80.00                  | 0.6000             | 0.6000             |
| T0<br>T7  | 1          | FSJ4-50B(1/2")                       | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7        | 4          | AL5-50(7/8)                          | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7        | 4          | AVA7-50(1-5/8)                       | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7        | 8          | LDF6-50A(1-1/4")                     | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7        | 10         | EW52(ELLIPTICAL)                     | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7        | 12         | LDF2-50(3/8")                        | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7        | 13         | T-Brackets (Af)                      | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7        | 15         | LDF7-50A(1-5/8")                     | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7        | 16         | WR-VG82ST-BRDA( 5/8")                | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| Τ7        | 18         | LDF2-50(3/8")                        | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| Τ7        | 19         | T-Brackets (Af)                      | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| Τ7        | 21         | CU12PSM9P6XXX(1-1/2)                 |                                |                    |                    |
| •         |            |                                      |                                |                    | -                  |



Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

| Tower    | Feed Line  | Description                               | Feed Line                      | Ka                 | Ka                 |
|----------|------------|-------------------------------------------|--------------------------------|--------------------|--------------------|
| Section  | Record No. |                                           | Segment Elev.                  | No Ice             | Ice                |
| T7       | 23         | LDF5-50A(7/8")                            | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7       | 24         | C4006L-NFNF(1-1/4")                       | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| Τ7       | 25         | 84080298(3/8")                            | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| Τ7       | 26         | Feedline Ladder (Af)                      | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7       | 28         | LDF7-50A(1-5/8")                          | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7       | 29         | LDF7-50A(1-5/8")                          | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7       | 32         | HB158-21U6S24-xxM_TMO                     | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7       | 35         | (1-5/8)<br>LDF4-50A(1/2")                 | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7       | 36         | T-Brackets (Af)                           | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| T7       | 38         | Thin Flat Bar Climbing                    | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| 1,       | 50         | Ladder                                    | 10.00 00.00                    | 0.0000             | 0.0000             |
| T7       | 39         | Safety Line 3/8                           | 40.00 - 60.00                  | 0.6000             | 0.6000             |
| Т8       | 1          | FSJ4-50B(1/2")                            | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| Т8       | 4          | AL5-50(7/8)                               | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| Т8       | 6          | AVA7-50(1-5/8)                            | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 8          | LDF6-50A(1-1/4")                          | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 10         | EW52(ELLIPTICAL)                          | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 12         | LDF2-50(3/8")                             | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 13         | T-Brackets (Af)                           | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8<br>T8 | 15<br>16   | LDF7-50A(1-5/8")<br>WR-VG82ST-BRDA( 5/8") | 20.00 - 40.00<br>20.00 - 40.00 | $0.6000 \\ 0.6000$ | $0.6000 \\ 0.6000$ |
| T8       | 18         | LDF2-50(3/8")                             | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 19         | T-Brackets (Af)                           | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 21         | CU12PSM9P6XXX(1-1/2)                      | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 23         | LDF5-50A(7/8")                            | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| Т8       | 24         | C4006L-NFNF(1-1/4")                       | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| Т8       | 25         | 84080298(3/8")                            | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| Т8       | 26         | Feedline Ladder (Af)                      | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| Т8       | 28         | LDF7-50A(1-5/8")                          | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 29         | LDF7-50A(1-5/8")                          | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| Т8       | 32         | HB158-21U6S24-xxM_TMO                     | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| Т8       | 35         | (1-5/8)<br>LDF4-50A(1/2")                 | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 36         | T-Brackets (Af)                           | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| T8       | 38         | Thin Flat Bar Climbing                    | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| 10       | 50         | Ladder                                    | 20.00 10.00                    | 0.0000             | 0.0000             |
| Т8       | 39         | Safety Line 3/8                           | 20.00 - 40.00                  | 0.6000             | 0.6000             |
| Т9       | 1          | FSJ4-50B(1/2")                            | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| Т9       | 4          | AL5-50(7/8)                               | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| Т9       | 6          | AVA7-50(1-5/8)                            | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| T9       | 8          | LDF6-50A(1-1/4")                          | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| T9       | 10         | EW52(ELLIPTICAL)                          | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| T9<br>T9 | 12<br>13   | LDF2-50(3/8")<br>T. Proskots (Af)         | 0.00 - 20.00                   | $0.6000 \\ 0.6000$ | $0.6000 \\ 0.6000$ |
| 19<br>T9 | 15         | T-Brackets (Af)<br>LDF7-50A(1-5/8")       | 0.00 - 20.00<br>0.00 - 20.00   | 0.6000             | 0.6000             |
| T9       | 15         | WR-VG82ST-BRDA( 5/8")                     | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| T9       | 18         | LDF2-50(3/8")                             | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| T9       | 19         | T-Brackets (Af)                           | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| Т9       | 21         | CU12PSM9P6XXX(1-1/2)                      | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| Т9       | 23         | LDF5-50A(7/8")                            | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| Т9       | 24         | C4006L-NFNF(1-1/4")                       | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| T9       | 25         | 84080298(3/8")                            | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| T9       | 26         | Feedline Ladder (Af)                      | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| T9<br>T0 | 28         | LDF7-50A(1-5/8")                          | 0.00 - 20.00<br>0.00 - 20.00   | 0.6000             | 0.6000             |
| T9<br>T9 | 29<br>32   | LDF7-50A(1-5/8")<br>HB158-21U6S24-xxM TMO | 0.00 - 20.00<br>0.00 - 20.00   | $0.6000 \\ 0.6000$ | $0.6000 \\ 0.6000$ |
| 19       | 52         | (1-5/8)                                   | 0.00 - 20.00                   | 0.0000             | 0.0000             |
| Т9       | 35         | LDF4-50A(1/2")                            | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| T9       | 36         | T-Brackets (Af)                           | 0.00 - 20.00                   | 0.6000             | 0.6000             |
| Т9       | 38         | Thin Flat Bar Climbing                    | 0.00 - 20.00                   | 0.6000             | 0.6000             |
|          |            | Ladder                                    |                                |                    |                    |
|          |            |                                           |                                |                    |                    |



**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Client

Crown Castle

#### Designed by Nithish Acharya

| Tower   | Feed Line  | Description     | Feed Line     | K <sub>a</sub> | K <sub>a</sub> |
|---------|------------|-----------------|---------------|----------------|----------------|
| Section | Record No. |                 | Segment Elev. | No Ice         | Ice            |
| Т9      | 39         | Safety Line 3/8 | 0.00 - 20.00  | 0.6000         | 0.6000         |

Job

Project

|                            |                   |                | Di                          | screte 1              | ower L    | oads                                             |                                               |                                           |                                           |
|----------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|
| Description                | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                                                  | $C_A A_A$<br>Front                            | C <sub>A</sub> A <sub>A</sub><br>Side     | Weight                                    |
|                            |                   |                | Vert<br>ft<br>ft<br>ft      | o                     | ft        |                                                  | ft <sup>2</sup>                               | ft <sup>2</sup>                           | Κ                                         |
| Lightning Rod 5/8" x 5'    | А                 | From Leg       | 0.000<br>0'<br>2'6"         | 0.000                 | 170'      | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice           | 0.313<br>0.826<br>1.322<br>1.957              | 0.313<br>0.826<br>1.322<br>1.957          | 0.006<br>0.010<br>0.016<br>0.040          |
| *<br>DB806-XC              | C                 | From Leg       | 0.000<br>0'<br>4'           | 0.000                 | 170'      | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice           | 1.140<br>1.675<br>2.025<br>2.753              | 1.140<br>1.675<br>2.025<br>2.753          | 0.021<br>0.030<br>0.043<br>0.080          |
| 8' x 2.375" Mount Pipe     | С                 | From Leg       | 0.000<br>0'<br>0'           | 0.000                 | 170'      | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice           | 2.753<br>1.900<br>2.728<br>3.401<br>4.396     | 2.753<br>1.900<br>2.728<br>3.401<br>4.396 | 0.080<br>0.029<br>0.044<br>0.063<br>0.119 |
| *                          |                   |                |                             |                       |           |                                                  |                                               |                                           |                                           |
| AIR 6419 B41_TMO           | А                 | From Leg       | 4.000<br>0'<br>1'           | 0.000                 | 168'      | No Ice<br>1/2" Ice<br>1" Ice                     | 6.998<br>7.527<br>8.073                       | 2.830<br>3.243<br>3.675                   | 0.097<br>0.140<br>0.188                   |
| AIR 6419 B41_TMO           | В                 | From Leg       | 4.000<br>0'<br>1'           | 0.000                 | 168'      | 2" Ice<br>No Ice<br>1/2" Ice<br>1" Ice           | 9.219<br>6.998<br>7.527<br>8.073              | 4.591<br>2.830<br>3.243<br>3.675          | 0.298<br>0.097<br>0.140<br>0.188<br>0.208 |
| AIR 6419 B41_TMO           | С                 | From Leg       | 4.000<br>0'<br>1'           | 0.000                 | 168'      | 2" Ice<br>No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 9.219<br>6.998<br>7.527<br>8.073<br>9.219     | 4.591<br>2.830<br>3.243<br>3.675<br>4.591 | 0.298<br>0.097<br>0.140<br>0.188<br>0.298 |
| 4003_840590966_TMO         | А                 | From Leg       | 4.000<br>0'<br>1'           | 0.000                 | 168'      | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice           | 9.219<br>10.237<br>10.781<br>11.334<br>12.468 | 4.391<br>3.117<br>3.587<br>4.066<br>5.051 | 0.298<br>0.136<br>0.240<br>0.353<br>0.605 |
| 4003_840590966_TMO         | В                 | From Leg       | 4.000<br>0'<br>1'           | 0.000                 | 168'      | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice           | 10.237<br>10.781<br>11.334<br>12.468          | 3.031<br>3.117<br>3.587<br>4.066<br>5.051 | 0.136<br>0.240<br>0.353<br>0.605          |
| 4003_840590966_TMO         | С                 | From Leg       | 4.000<br>0'<br>1'           | 0.000                 | 168'      | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice           | 10.237<br>10.781<br>11.334<br>12.468          | 3.031<br>3.117<br>3.587<br>4.066<br>5.051 | 0.136<br>0.240<br>0.353<br>0.605          |
| APXVLL19P_43-C-A20_TM<br>O | А                 | From Leg       | 4.000<br>0'<br>1'           | 0.000                 | 168'      | No Ice<br>1/2" Ice<br>1" Ice                     | 5.154<br>5.681<br>6.220                       | 2.110<br>2.597<br>3.096                   | 0.048<br>0.092<br>0.142                   |
| PXVLL19P_43-C-A20_TM       | В                 | From Leg       | 4.000                       | 0.000                 | 168'      | 2" Ice<br>No Ice                                 | 7.334<br>5.154                                | 4.130<br>2.110                            | 0.261<br>0.048                            |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 15 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

#### Designed by Nithish Acharya

| Description                | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight         |
|----------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|----------------|
|                            |                   |                | Vert<br>ft<br>ft            | o                     | ft        |                    | ft <sup>2</sup>    | ft <sup>2</sup>   | K              |
|                            |                   |                | ft                          |                       |           |                    |                    |                   |                |
| 0                          |                   |                | 0'                          |                       |           | 1/2" Ice           | 5.681              | 2.597             | 0.092          |
|                            |                   |                | 1'                          |                       |           | 1" Ice<br>2" Ice   | 6.220<br>7.334     | 3.096<br>4.130    | 0.142<br>0.261 |
| APXVLL19P_43-C-A20_TM      | С                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 5.154              | 2.110             | 0.201          |
| 0                          | C                 | FIOIDLeg       | 4.000                       | 0.000                 | 108       | 1/2" Ice           | 5.681              | 2.597             | 0.048          |
| C                          |                   |                | 1'                          |                       |           | 1" Ice             | 6.220              | 3.096             | 0.142          |
|                            |                   |                |                             |                       |           | 2" Ice             | 7.334              | 4.130             | 0.261          |
| RADIO 4460 B2/B25          | А                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 2.139              | 1.686             | 0.109          |
| B66_TMO                    |                   | C              | 0'                          |                       |           | 1/2" Ice           | 2.321              | 1.850             | 0.131          |
|                            |                   |                | 1'                          |                       |           | 1" Ice             | 2.511              | 2.022             | 0.156          |
|                            |                   |                |                             |                       |           | 2" Ice             | 2.912              | 2.387             | 0.217          |
| RADIO 4460 B2/B25          | В                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 2.139              | 1.686             | 0.109          |
| B66_TMO                    |                   |                | 0'                          |                       |           | 1/2" Ice           | 2.321              | 1.850             | 0.131          |
|                            |                   |                | 1'                          |                       |           | 1" Ice             | 2.511              | 2.022             | 0.156          |
| BADIO 4460 DO DOS          | C                 | <b>F I</b>     | 4 000                       | 0.000                 | 1.00      | 2" Ice             | 2.912              | 2.387             | 0.217          |
| RADIO 4460 B2/B25          | С                 | From Leg       | 4.000<br>0'                 | 0.000                 | 168'      | No Ice<br>1/2" Ice | 2.139<br>2.321     | 1.686<br>1.850    | 0.109          |
| B66_TMO                    |                   |                | 0<br>1'                     |                       |           | 1/2 Ice<br>1" Ice  | 2.521              | 2.022             | 0.131<br>0.156 |
|                            |                   |                | 1                           |                       |           | 2" Ice             | 2.912              | 2.387             | 0.130          |
| Radio 4480 TMOV2           | А                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 2.912              | 1.397             | 0.217          |
| Radio 4400_1100 V2         | Α                 | I Iolli Leg    | 4.000<br>0'                 | 0.000                 | 100       | 1/2" Ice           | 3.091              | 1.558             | 0.103          |
|                            |                   |                | 1'                          |                       |           | 1" Ice             | 3.312              | 1.727             | 0.105          |
|                            |                   |                | •                           |                       |           | 2" Ice             | 3.775              | 2.090             | 0.188          |
| Radio 4480 TMOV2           | В                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 2.878              | 1.397             | 0.081          |
| —                          |                   | U              | 0'                          |                       |           | 1/2" Ice           | 3.091              | 1.558             | 0.103          |
|                            |                   |                | 1'                          |                       |           | 1" Ice             | 3.312              | 1.727             | 0.128          |
|                            |                   |                |                             |                       |           | 2" Ice             | 3.775              | 2.090             | 0.188          |
| Radio 4480_TMOV2           | С                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 2.878              | 1.397             | 0.081          |
|                            |                   |                | 0'                          |                       |           | 1/2" Ice           | 3.091              | 1.558             | 0.103          |
|                            |                   |                | 1'                          |                       |           | 1" Ice             | 3.312              | 1.727             | 0.128          |
| (4) 81 211 Marriet Divis   |                   | <b>F</b>       | 4 000                       | 0.000                 | 1.(0)     | 2" Ice             | 3.775              | 2.090             | 0.188          |
| (4) 8' x 2" Mount Pipe     | А                 | From Leg       | 4.000<br>0'                 | 0.000                 | 168'      | No Ice<br>1/2" Ice | 1.900<br>2.728     | 1.900<br>2.728    | 0.029<br>0.044 |
|                            |                   |                | 0'                          |                       |           | 172 Ice<br>1" Ice  | 3.401              | 3.401             | 0.044          |
|                            |                   |                | 0                           |                       |           | 2" Ice             | 4.396              | 4.396             | 0.119          |
| (4) 8' x 2" Mount Pipe     | В                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 1.900              | 1.900             | 0.029          |
| (1) 0 11 2 1110 and 1 1.p. | 2                 | TTOIL 200      | 0'                          | 01000                 | 100       | 1/2" Ice           | 2.728              | 2.728             | 0.044          |
|                            |                   |                | 0'                          |                       |           | 1" Ice             | 3.401              | 3.401             | 0.063          |
|                            |                   |                |                             |                       |           | 2" Ice             | 4.396              | 4.396             | 0.119          |
| (4) 8' x 2" Mount Pipe     | С                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 1.900              | 1.900             | 0.029          |
|                            |                   |                | 0'                          |                       |           | 1/2" Ice           | 2.728              | 2.728             | 0.044          |
|                            |                   |                | 0'                          |                       |           | 1" Ice             | 3.401              | 3.401             | 0.063          |
|                            |                   |                |                             |                       |           | 2" Ice             | 4.396              | 4.396             | 0.119          |
| 10' horizontal x 2" Pipe   | А                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 1.900              | 0.010             | 0.027          |
| Mount                      |                   |                | 0'                          |                       |           | 1/2" Ice           | 2.920              | 0.040             | 0.042          |
|                            |                   |                | 0'                          |                       |           | 1" Ice             | 3.970              | 0.090             | 0.063          |
| 10' horizontal x 2" Pipe   | В                 | From Leg       | 4 000                       | 0.000                 | 168'      | 2" Ice<br>No Ice   | 5.650<br>1.900     | 0.210<br>0.010    | 0.126<br>0.027 |
| Mount                      | D                 | From Leg       | 4.000<br>0'                 | 0.000                 | 108       | 1/2" Ice           | 2.920              | 0.010             | 0.027          |
| moult                      |                   |                | 0'                          |                       |           | 1" Ice             | 3.970              | 0.040             | 0.042          |
|                            |                   |                | 0                           |                       |           | 2" Ice             | 5.650              | 0.210             | 0.126          |
| 10' horizontal x 2" Pipe   | С                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 1.900              | 0.010             | 0.027          |
| Mount                      | -                 | 8              | 0'                          |                       |           | 1/2" Ice           | 2.920              | 0.040             | 0.042          |
|                            |                   |                | ů'                          |                       |           | 1" Ice             | 3.970              | 0.090             | 0.063          |
|                            |                   |                |                             |                       |           | 2" Ice             | 5.650              | 0.210             | 0.126          |
| Site Pro1 VFA12-HD         | А                 | From Leg       | 4.000                       | 0.000                 | 168'      | No Ice             | 13.200             | 13.200            | 0.658          |
|                            |                   | -              | 0'                          |                       |           | 1/2" Ice           | 19.500             | 19.500            | 0.804          |

| tnxT | 'ower |
|------|-------|
|      |       |

#### Job 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 16 of 39

Date

Project

Client

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

|                                  | or<br>Leg | Type       | Horz<br>Lateral        | Adjustment |              |                    | Front            | Side             | Weight           |
|----------------------------------|-----------|------------|------------------------|------------|--------------|--------------------|------------------|------------------|------------------|
|                                  | C         |            | Vert<br>ft<br>ft<br>ft | 0          | ft           |                    | $ft^2$           | ft <sup>2</sup>  | K                |
|                                  |           |            | 0'                     |            |              | 1" Ice             | 25.800           | 25.800           | 1.015            |
|                                  |           |            |                        |            |              | 2" Ice             | 38.400           | 38.400           | 1.437            |
| Site Pro1 VFA12-HD               | В         | From Leg   | 4.000                  | 0.000      | 168'         | No Ice             | 13.200           | 13.200           | 0.658            |
|                                  |           |            | 0'                     |            |              | 1/2" Ice           | 19.500           | 19.500           | 0.804            |
|                                  |           |            | 0'                     |            |              | 1" Ice             | 25.800           | 25.800           | 1.015            |
| Site Pro1 VFA12-HD               | С         | Enom Lag   | 4 000                  | 0.000      | 168'         | 2" Ice<br>No Ice   | 38.400           | 38.400<br>13.200 | 1.437            |
| She FIOT VFA12-HD                | C         | From Leg   | 4.000<br>0'            | 0.000      | 108          | 1/2" Ice           | 13.200<br>19.500 | 19.500           | $0.658 \\ 0.804$ |
|                                  |           |            | 0'                     |            |              | 172 Ice<br>1" Ice  | 25.800           | 25.800           | 1.015            |
|                                  |           |            | 0                      |            |              | 2" Ice             | 38.400           | 38.400           | 1.437            |
| *                                |           |            |                        |            |              |                    |                  |                  |                  |
| *                                |           |            |                        |            |              |                    |                  |                  |                  |
| *                                |           |            |                        |            |              |                    |                  |                  |                  |
| 6813-2 HW                        | С         | From Leg   | 4.000                  | 0.000      | 160'         | No Ice             | 42.376           | 33.075           | 0.096            |
|                                  |           |            | 0'                     |            |              | 1/2" Ice           | 43.429           | 34.143           | 0.370            |
|                                  |           |            | 2'                     |            |              | 1" Ice<br>2" Ice   | 44.489<br>46.630 | 35.219<br>37.393 | 0.658<br>1.278   |
| Side Arm Mount [SO 305-1]        | С         | From Leg   | 0.500                  | 0.000      | 160'         | No Ice             | 0.530            | 1.520            | 0.030            |
| Side Ami Mount [50 505-1]        | C         | 1 Ioni Leg | 0.500                  | 0.000      | 100          | 1/2" Ice           | 0.780            | 2.070            | 0.044            |
|                                  |           |            | 0'                     |            |              | 1" Ice             | 1.060            | 2.660            | 0.064            |
|                                  |           |            |                        |            |              | 2" Ice             | 1.730            | 3.910            | 0.125            |
| *                                |           |            |                        |            |              |                    |                  |                  |                  |
| (2) P65.15.XL.0 w/ Mount         | В         | From Leg   | 4.000                  | 0.000      | 151'         | No Ice             | 5.304            | 3.665            | 0.040            |
| Pipe                             |           |            | 0'                     |            |              | 1/2" Ice           | 5.692            | 4.278            | 0.084            |
|                                  |           |            | 0'                     |            |              | 1" Ice             | 6.087            | 4.902            | 0.134            |
| (2) B65 15 VI () w/ Mount        | C         | Enom Lag   | 4 000                  | 0.000      | 1511         | 2" Ice             | 6.903<br>5.204   | 6.188            | 0.254            |
| (2) P65.15.XL.0 w/ Mount<br>Pipe | С         | From Leg   | 4.000<br>0'            | 0.000      | 151'         | No Ice<br>1/2" Ice | 5.304<br>5.692   | 3.665<br>4.278   | $0.040 \\ 0.084$ |
| Tipe                             |           |            | 0'                     |            |              | 1" Ice             | 6.087            | 4.902            | 0.134            |
|                                  |           |            | Ŭ                      |            |              | 2" Ice             | 6.903            | 6.188            | 0.254            |
| Pipe Mount [PM 601-1]            | В         | From Leg   | 0.500                  | 0.000      | 151'         | No Ice             | 1.320            | 1.320            | 0.065            |
|                                  |           |            | 0'                     |            |              | 1/2" Ice           | 1.580            | 1.580            | 0.077            |
|                                  |           |            | 0'                     |            |              | 1" Ice             | 1.840            | 1.840            | 0.093            |
|                                  | ~         |            |                        |            |              | 2" Ice             | 2.400            | 2.400            | 0.134            |
| Pipe Mount [PM 601-1]            | С         | From Leg   | 0.500                  | 0.000      | 151'         | No Ice             | 1.320            | 1.320            | 0.065            |
|                                  |           |            | 0'<br>0'               |            |              | 1/2" Ice<br>1" Ice | $1.580 \\ 1.840$ | 1.580<br>1.840   | 0.077<br>0.093   |
|                                  |           |            | 0                      |            |              | 2" Ice             | 2.400            | 2.400            | 0.093            |
| Sector Mount [SM 602-1]          | В         | From Leg   | 2.000                  | 0.000      | 151'         | No Ice             | 20.000           | 8.530            | 0.513            |
|                                  | _         | 8          | 0'                     |            |              | 1/2" Ice           | 24.070           | 11.090           | 0.707            |
|                                  |           |            | 0'                     |            |              | 1" Ice             | 28.330           | 13.630           | 0.947            |
|                                  |           |            |                        |            |              | 2" Ice             | 37.820           | 18.640           | 1.562            |
| Sector Mount [SM 602-1]          | С         | From Leg   | 2.000                  | 0.000      | 151'         | No Ice             | 20.000           | 8.530            | 0.513            |
|                                  |           |            | 0'                     |            |              | 1/2" Ice           | 24.070           | 11.090           | 0.707            |
|                                  |           |            | 0'                     |            |              | 1" Ice             | 28.330           | 13.630           | 0.947            |
| *                                |           |            |                        |            |              | 2" Ice             | 37.820           | 18.640           | 1.562            |
| 800 10122 w/ Mount Pipe          | А         | From Leg   | 4.000                  | 0.000      | 145'         | No Ice             | 6.235            | 4.893            | 0.086            |
| ooo rorzz wi wount ripe          | 11        | 1 Iom Log  | 4.000                  | 0.000      | 1-f <i>J</i> | 1/2" Ice           | 6.890            | 5.530            | 0.080            |
|                                  |           |            | <b>0</b> '             |            |              | 1" Ice             | 7.560            | 6.182            | 0.212            |
|                                  |           |            |                        |            |              | 2" Ice             | 8.944            | 7.530            | 0.384            |
| 800 10122 w/ Mount Pipe          | В         | From Leg   | 4.000                  | 0.000      | 145'         | No Ice             | 6.235            | 4.893            | 0.086            |
|                                  |           |            | 0'                     |            |              | 1/2" Ice           | 6.890            | 5.530            | 0.144            |
|                                  |           |            | 0'                     |            |              | 1" Ice             | 7.560            | 6.182            | 0.212            |
| 200 10122 m/ Marrie Dia          | C         | Enom I     | 4 000                  | 0.000      | 1451         | 2" Ice             | 8.944            | 7.530            | 0.384            |
| 800 10122 w/ Mount Pipe          | С         | From Leg   | 4.000<br>0'            | 0.000      | 145'         | No Ice             | 6.235            | 4.893            | 0.086            |
|                                  |           |            | U.                     |            |              | 1/2" Ice           | 6.890            | 5.530            | 0.144            |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 17 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

| Description                            | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weigl |
|----------------------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|-------|
|                                        | Leg               |                | Vert<br>ft                  | o                     | ft        |                    | $ft^2$             | $ft^2$            | K     |
|                                        |                   |                | ft<br>ft                    |                       |           |                    |                    |                   |       |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 7.560              | 6.182             | 0.212 |
|                                        |                   |                |                             |                       |           | 2" Ice             | 8.944              | 7.530             | 0.384 |
| M-X-CD-16-65-00T-RET                   | Α                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 4.628              | 3.275             | 0.074 |
| w/ Mount Pipe                          |                   |                | 0'                          |                       |           | 1/2" Ice           | 5.064              | 3.692             | 0.13  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 5.510              | 4.119             | 0.20  |
| NY CD 16 (5 OOT DET                    | D                 | E I            | 1 000                       | 0.000                 | 1 4 51    | 2" Ice             | 6.433              | 5.005             | 0.37  |
| AM-X-CD-16-65-00T-RET<br>w/ Mount Pipe | В                 | From Leg       | 4.000<br>0'                 | 0.000                 | 145'      | No Ice<br>1/2" Ice | 4.628<br>5.064     | 3.275<br>3.692    | 0.074 |
| w/ Would Pipe                          |                   |                | 0'                          |                       |           | 172 Ice            | 5.510              | 4.119             | 0.13  |
|                                        |                   |                | 0                           |                       |           | 2" Ice             | 6.433              | 5.005             | 0.37  |
| AM-X-CD-16-65-00T-RET                  | С                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 4.628              | 3.275             | 0.074 |
| w/ Mount Pipe                          |                   | 6              | 0'                          |                       |           | 1/2" Ice           | 5.064              | 3.692             | 0.13  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 5.510              | 4.119             | 0.20  |
|                                        |                   |                |                             |                       |           | 2" Ice             | 6.433              | 5.005             | 0.37  |
| QS66512-2 w/ Mount Pipe                | А                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 4.035              | 4.181             | 0.13  |
|                                        |                   |                | 0'                          |                       |           | 1/2" Ice           | 4.421              | 4.569             | 0.20  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 4.816              | 4.966             | 0.28  |
| OS((512.2 m/ Marriet Din a             | р                 | Ensue Las      | 4 000                       | 0.000                 | 1451      | 2" Ice             | 5.634              | 5.787             | 0.48  |
| QS66512-2 w/ Mount Pipe                | В                 | From Leg       | 4.000<br>0'                 | 0.000                 | 145'      | No Ice<br>1/2" Ice | 4.035<br>4.421     | 4.181<br>4.569    | 0.13  |
|                                        |                   |                | 0'                          |                       |           | 172 Ice            | 4.421              | 4.966             | 0.28  |
|                                        |                   |                | 0                           |                       |           | 2" Ice             | 5.634              | 5.787             | 0.48  |
| S66512-2 w/ Mount Pipe                 | С                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 4.035              | 4.181             | 0.13  |
| 500012 2 w/ Would Tipe                 |                   |                | 0'                          |                       |           | 1/2" Ice           | 4.421              | 4.569             | 0.20  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 4.816              | 4.966             | 0.28  |
|                                        |                   |                |                             |                       |           | 2" Ice             | 5.634              | 5.787             | 0.48  |
| (4) 860 10025                          | А                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 0.142              | 0.121             | 0.00  |
|                                        |                   |                | 0'                          |                       |           | 1/2" Ice           | 0.196              | 0.173             | 0.00  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 0.259              | 0.231             | 0.00  |
| (4) 860 10025                          | В                 | From Leg       | 4.000                       | 0.000                 | 145'      | 2" Ice<br>No Ice   | 0.408<br>0.142     | 0.376<br>0.121    | 0.014 |
| (4) 800 10023                          | Б                 | FIOII Leg      | 4.000                       | 0.000                 | 145       | 1/2" Ice           | 0.142              | 0.121             | 0.00  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 0.259              | 0.231             | 0.00  |
|                                        |                   |                | 0                           |                       |           | 2" Ice             | 0.408              | 0.376             | 0.014 |
| (4) 860 10025                          | С                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 0.142              | 0.121             | 0.00  |
| × /                                    |                   | C              | 0'                          |                       |           | 1/2" Ice           | 0.196              | 0.173             | 0.00  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 0.259              | 0.231             | 0.00  |
|                                        |                   |                |                             |                       |           | 2" Ice             | 0.408              | 0.376             | 0.01  |
| (2) LGP21401                           | Α                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 1.104              | 0.207             | 0.01  |
|                                        |                   |                | 0'                          |                       |           | 1/2" Ice           | 1.239              | 0.274             | 0.02  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice<br>2" Ice   | 1.381<br>1.688     | 0.348<br>0.521    | 0.03  |
| (2) LGP21401                           | В                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 1.104              | 0.321             | 0.03  |
| (2) EGI 21401                          | Б                 | Tiom Leg       | -1.000                      | 0.000                 | 145       | 1/2" Ice           | 1.239              | 0.274             | 0.02  |
|                                        |                   |                | Ŏ'                          |                       |           | 1" Ice             | 1.381              | 0.348             | 0.03  |
|                                        |                   |                |                             |                       |           | 2" Ice             | 1.688              | 0.521             | 0.05  |
| (2) LGP21401                           | С                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 1.104              | 0.207             | 0.01  |
|                                        |                   |                | 0'                          |                       |           | 1/2" Ice           | 1.239              | 0.274             | 0.02  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 1.381              | 0.348             | 0.03  |
|                                        |                   | <b>F F</b>     | 1.000                       | 0.000                 | 1 4 5 7   | 2" Ice             | 1.688              | 0.521             | 0.05  |
| RRUS 32 B66                            | А                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 2.743              | 1.668             | 0.05  |
|                                        |                   |                | 0'<br>0'                    |                       |           | 1/2" Ice<br>1" Ice | 2.965<br>3.194     | 1.855<br>2.049    | 0.07  |
|                                        |                   |                | 0                           |                       |           | 2" Ice             | 3.194              | 2.049             | 0.09  |
| RRUS 32 B66                            | В                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 2.743              | 1.668             | 0.05  |
| 11100 02 000                           | Ъ                 | 1.5111 205     | 4.000<br>0'                 | 5.000                 | 110       | 1/2" Ice           | 2.965              | 1.855             | 0.07  |
|                                        |                   |                | 0'                          |                       |           | 1" Ice             | 3.194              | 2.049             | 0.098 |

Page 18 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

| Description         | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weigh |
|---------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|-------|
|                     | Leg               |                | Vert<br>ft<br>ft<br>ft      | 0                     | ft        |                    | $ft^2$             | ft <sup>2</sup>   | K     |
|                     |                   |                |                             |                       |           | 2" Ice             | 3.675              | 2.458             | 0.157 |
| RRUS 32 B66         | С                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 2.743              | 1.668             | 0.053 |
|                     |                   |                | 0'                          |                       |           | 1/2" Ice           | 2.965              | 1.855             | 0.074 |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 3.194              | 2.049             | 0.098 |
| DDLIC 22            |                   | E I            | 4 000                       | 0.000                 | 1451      | 2" Ice             | 3.675              | 2.458             | 0.157 |
| RRUS 32             | А                 | From Leg       | 4.000<br>0'                 | 0.000                 | 145'      | No Ice<br>1/2" Ice | 2.857<br>3.083     | 1.777<br>1.968    | 0.055 |
|                     |                   |                | 0'                          |                       |           | 172 Ice            | 3.316              | 2.166             | 0.103 |
|                     |                   |                | 0                           |                       |           | 2" Ice             | 3.805              | 2.583             | 0.16  |
| RRUS 32             | В                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 2.857              | 1.777             | 0.055 |
| KK05 52             | Б                 | 110111 Leg     | 4.000<br>0'                 | 0.000                 | 145       | 1/2" Ice           | 3.083              | 1.968             | 0.05  |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 3.316              | 2.166             | 0.103 |
|                     |                   |                | 0                           |                       |           | 2" Ice             | 3.805              | 2.583             | 0.165 |
| RRUS 32             | С                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 2.857              | 1.777             | 0.055 |
|                     |                   | 8              | 0'                          |                       |           | 1/2" Ice           | 3.083              | 1.968             | 0.077 |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 3.316              | 2.166             | 0.103 |
|                     |                   |                |                             |                       |           | 2" Ice             | 3.805              | 2.583             | 0.165 |
| (2) DBC0061F1V51-2  | А                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 0.433              | 0.413             | 0.025 |
|                     |                   |                | 0'                          |                       |           | 1/2" Ice           | 0.518              | 0.496             | 0.031 |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 0.609              | 0.586             | 0.038 |
|                     |                   |                |                             |                       |           | 2" Ice             | 0.815              | 0.788             | 0.057 |
| (2) DBC0061F1V51-2  | В                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 0.433              | 0.413             | 0.025 |
| ,                   |                   |                | 0'                          |                       |           | 1/2" Ice           | 0.518              | 0.496             | 0.031 |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 0.609              | 0.586             | 0.038 |
|                     |                   |                |                             |                       |           | 2" Ice             | 0.815              | 0.788             | 0.057 |
| (2) DBC0061F1V51-2  | С                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 0.433              | 0.413             | 0.025 |
|                     |                   |                | 0'                          |                       |           | 1/2" Ice           | 0.518              | 0.496             | 0.03  |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 0.609              | 0.586             | 0.038 |
| (2) <b>DD</b> UC 11 |                   | гт             | 1 000                       | 0.000                 | 1 4 51    | 2" Ice             | 0.815              | 0.788             | 0.057 |
| (2) RRUS 11         | А                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice<br>1/2" Ice | 2.784<br>2.992     | 1.187<br>1.334    | 0.048 |
|                     |                   |                | 0'<br>0'                    |                       |           | 172 Ice<br>1" Ice  | 3.207              | 1.334             | 0.002 |
|                     |                   |                | 0                           |                       |           | 2" Ice             | 3.658              | 1.490             | 0.092 |
| (2) RRUS 11         | В                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 2.784              | 1.187             | 0.130 |
| (2) KK05 11         | Б                 | 1 Ioni Leg     | 4.000<br>0'                 | 0.000                 | 145       | 1/2" Ice           | 2.992              | 1.334             | 0.068 |
|                     |                   |                | 0'                          |                       |           | 172 Ice            | 3.207              | 1.490             | 0.000 |
|                     |                   |                | 0                           |                       |           | 2" Ice             | 3.658              | 1.833             | 0.150 |
| (2) RRUS 11         | С                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 2.784              | 1.187             | 0.048 |
| (2) 1410 5 11       | e.                | i ioni Leg     | 0'                          | 01000                 | 110       | 1/2" Ice           | 2.992              | 1.334             | 0.068 |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 3.207              | 1.490             | 0.092 |
|                     |                   |                |                             |                       |           | 2" Ice             | 3.658              | 1.833             | 0.150 |
| DC6-48-60-18-8F     | А                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 0.850              | 0.850             | 0.019 |
|                     |                   |                | 0'                          |                       |           | 1/2" Ice           | 1.356              | 1.356             | 0.036 |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 1.532              | 1.532             | 0.055 |
|                     |                   |                |                             |                       |           | 2" Ice             | 1.914              | 1.914             | 0.101 |
| DC6-48-60-18-8F     | А                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 0.850              | 0.850             | 0.019 |
|                     |                   |                | 0'                          |                       |           | 1/2" Ice           | 1.356              | 1.356             | 0.036 |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 1.532              | 1.532             | 0.055 |
|                     |                   | <b>F</b>       | 4.000                       | 0.000                 | 1 /       | 2" Ice             | 1.914              | 1.914             | 0.101 |
| 8' x 2" Pipe Mount  | А                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 1.900              | 1.900             | 0.029 |
|                     |                   |                | 0'                          |                       |           | 1/2" Ice           | 2.728              | 2.728             | 0.044 |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 3.401              | 3.401             | 0.063 |
| Q' v 2" Ding Manut  | р                 | Erom Las       | 4 000                       | 0.000                 | 145'      | 2" Ice             | 4.396              | 4.396             | 0.119 |
| 8' x 2" Pipe Mount  | В                 | From Leg       | 4.000                       | 0.000                 | 145       | No Ice<br>1/2" Ice | 1.900<br>2.728     | 1.900             | 0.029 |
| 1                   |                   |                | 0'                          |                       |           |                    | 2.128              | 2.728             |       |
|                     |                   |                | 0'                          |                       |           | 1" Ice             | 3.401              | 3.401             | 0.063 |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 19 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

| Description             | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weigh |
|-------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|-------|
|                         |                   |                | Vert<br>ft<br>ft<br>ft      | 0                     | ft        |                    | $ft^2$             | ft <sup>2</sup>   | K     |
| 8' x 2" Pipe Mount      | С                 | From Leg       | 4.000                       | 0.000                 | 145'      | No Ice             | 1.900              | 1.900             | 0.029 |
| • ··· - ··· ···         | -                 |                | 0'                          |                       |           | 1/2" Ice           | 2.728              | 2.728             | 0.044 |
|                         |                   |                | 0'                          |                       |           | 1" Ice             | 3.401              | 3.401             | 0.063 |
|                         |                   |                |                             |                       |           | 2" Ice             | 4.396              | 4.396             | 0.119 |
| Pipe Mount [PM 601-3]   | С                 | None           |                             | 0.000                 | 145'      | No Ice             | 3.170              | 3.170             | 0.195 |
|                         |                   |                |                             |                       |           | 1/2" Ice           | 3.790              | 3.790             | 0.232 |
|                         |                   |                |                             |                       |           | 1" Ice             | 4.420              | 4.420             | 0.279 |
|                         |                   |                |                             |                       |           | 2" Ice             | 5.760              | 5.760             | 0.401 |
| Sector Mount [SM 702-3] | С                 | None           |                             | 0.000                 | 145'      | No Ice             | 38.890             | 38.890            | 1.551 |
|                         |                   |                |                             |                       |           | 1/2" Ice           | 50.400             | 50.400            | 2.279 |
|                         |                   |                |                             |                       |           | 1" Ice             | 61.770             | 61.770            | 3.217 |
| *                       |                   |                |                             |                       |           | 2" Ice             | 84.350             | 84.350            | 5.705 |
| Pipe Mount [PM 601-1]   | С                 | From Leg       | 0.500                       | 0.000                 | 139'      | No Ice             | 1.320              | 1.320             | 0.065 |
|                         |                   |                | 0'                          |                       |           | 1/2" Ice           | 1.580              | 1.580             | 0.077 |
|                         |                   |                | 0'                          |                       |           | 1" Ice             | 1.840              | 1.840             | 0.093 |
| *                       |                   |                |                             |                       |           | 2" Ice             | 2.400              | 2.400             | 0.134 |
| LNX-6514DS-A1M w/       | А                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 4.095              | 3.296             | 0.06  |
| Mount Pipe              |                   | C              | 0'                          |                       |           | 1/2" Ice           | 4.485              | 3.675             | 0.128 |
| -                       |                   |                | 1'                          |                       |           | 1" Ice             | 4.885              | 4.064             | 0.202 |
|                         |                   |                |                             |                       |           | 2" Ice             | 5.712              | 4.869             | 0.383 |
| LNX-6514DS-A1M w/       | В                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 4.095              | 3.296             | 0.065 |
| Mount Pipe              |                   |                | 0'                          |                       |           | 1/2" Ice           | 4.485              | 3.675             | 0.128 |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 4.885              | 4.064             | 0.202 |
|                         |                   |                |                             |                       |           | 2" Ice             | 5.712              | 4.869             | 0.383 |
| LNX-6514DS-A1M w/       | С                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 4.095              | 3.296             | 0.06  |
| Mount Pipe              |                   |                | 0'                          |                       |           | 1/2" Ice           | 4.485              | 3.675             | 0.128 |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 4.885              | 4.064             | 0.202 |
| V7C 665 2 w/ Mount Ding |                   | Enom Lag       | 4 000                       | 0.000                 | 130'      | 2" Ice<br>No Ice   | 5.712<br>7.546     | 4.869<br>5.661    | 0.383 |
| X7C-665-2 w/ Mount Pipe | А                 | From Leg       | 4.000<br>0'                 | 0.000                 | 150       | 1/2" Ice           | 8.242              | 6.331             | 0.005 |
|                         |                   |                | 1'                          |                       |           | 172 Icc<br>1" Ice  | 8.955              | 7.018             | 0.13  |
|                         |                   |                | 1                           |                       |           | 2" Ice             | 10.429             | 8.440             | 0.200 |
| K7C-665-2 w/ Mount Pipe | В                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 7.546              | 5.661             | 0.069 |
| 1, 0 000 2 income 1.pe  | 2                 | Trom Deg       | 0'                          | 0.000                 | 100       | 1/2" Ice           | 8.242              | 6.331             | 0.133 |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 8.955              | 7.018             | 0.208 |
|                         |                   |                |                             |                       |           | 2" Ice             | 10.429             | 8.440             | 0.392 |
| X7C-680-2 w/ Mount Pipe | С                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 7.281              | 5.911             | 0.068 |
| -                       |                   | -              | 0'                          |                       |           | 1/2" Ice           | 7.954              | 6.565             | 0.133 |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 8.642              | 7.235             | 0.210 |
|                         |                   |                |                             |                       |           | 2" Ice             | 10.066             | 8.620             | 0.396 |
| HBXX-6516DS-A2M w/      | А                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 5.180              | 3.970             | 0.050 |
| Mount Pipe              |                   |                | 0'                          |                       |           | 1/2" Ice           | 5.701              | 4.468             | 0.094 |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 6.239              | 4.981             | 0.14  |
|                         | F                 | <b>.</b> .     | 1.000                       | 0.000                 | 120       | 2" Ice             | 7.361              | 6.056             | 0.280 |
| HBXX-6516DS-A2M w/      | В                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 5.180              | 3.970             | 0.050 |
| Mount Pipe              |                   |                | 0'                          |                       |           | 1/2" Ice           | 5.701              | 4.468             | 0.094 |
|                         |                   |                | 1'                          |                       |           | 1" Ice<br>2" Ice   | 6.239<br>7.261     | 4.981             | 0.147 |
| HBXX-6516DS-A2M w/      | C                 | From I ac      | 1 000                       | 0.000                 | 130'      |                    | 7.361<br>5.180     | 6.056<br>3.970    | 0.280 |
|                         | С                 | From Leg       | 4.000<br>0'                 | 0.000                 | 130       | No Ice<br>1/2" Ice | 5.180              | 3.970<br>4.468    | 0.050 |
| Mount Pipe              |                   |                | 0'<br>1'                    |                       |           | 1/2" Ice<br>1" Ice | 6.239              | 4.468 4.981       | 0.092 |
|                         |                   |                | 1                           |                       |           | 2" Ice             | 0.239<br>7.361     | 6.056             | 0.14  |
| SBNHH-1D65B w/ Mount    | А                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 4.095              | 3.296             | 0.280 |
| Pipe                    |                   | 110m Leg       | 4.000<br>0'                 | 0.000                 | 150       | 1/2" Ice           | 4.486              | 3.676             | 0.130 |
| - ·P -                  |                   |                | 1'                          |                       |           | 1" Ice             | 4.887              | 4.066             | 0.204 |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 20 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

#### Designed by Nithish Acharya

| Description             | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight         |
|-------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|----------------|
|                         |                   |                | Vert<br>ft<br>ft<br>ft      | o                     | ft        |                    | ft <sup>2</sup>    | $ft^2$            | K              |
|                         |                   |                | Ji                          |                       |           | 2" Ice             | 5.715              | 4.872             | 0.386          |
| SBNHH-1D65B w/ Mount    | В                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 4.095              | 3.296             | 0.066          |
| Pipe                    |                   |                | 0'                          |                       |           | 1/2" Ice           | 4.486              | 3.676             | 0.130          |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 4.887              | 4.066             | 0.204          |
|                         |                   |                |                             |                       |           | 2" Ice             | 5.715              | 4.872             | 0.386          |
| SBNHH-1D65B w/ Mount    | С                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 4.095              | 3.296             | 0.066          |
| Pipe                    |                   |                | 0'                          |                       |           | 1/2" Ice           | 4.486              | 3.676             | 0.130          |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 4.887              | 4.066             | 0.204          |
|                         |                   |                | 4 0 0 0                     | 0.000                 | 1201      | 2" Ice             | 5.715              | 4.872             | 0.386          |
| DB-B1-6C-12AB-0Z        | А                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 3.364              | 2.192             | 0.021          |
|                         |                   |                | 0'                          |                       |           | 1/2" Ice           | 3.597              | 2.395             | 0.050          |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 3.838              | 2.606             | 0.082          |
| DD D1 6C 12AD 07        | C                 | Enom Lag       | 4 000                       | 0.000                 | 120       | 2" Ice             | 4.343              | 3.049             | 0.158          |
| DB-B1-6C-12AB-0Z        | С                 | From Leg       | 4.000<br>0'                 | 0.000                 | 130'      | No Ice<br>1/2" Ice | 3.364<br>3.597     | 2.192<br>2.395    | 0.021<br>0.050 |
|                         |                   |                | 0<br>1'                     |                       |           | 172 Ice            | 3.838              | 2.606             | 0.030          |
|                         |                   |                | 1                           |                       |           | 2" Ice             | 4.343              | 3.049             | 0.082          |
| RRH2X60-AWS             | А                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 3.500              | 1.816             | 0.060          |
| KKII2X00-AW5            | А                 | 110III Leg     | 4.000<br>0'                 | 0.000                 | 150       | 1/2" Ice           | 3.761              | 2.052             | 0.083          |
|                         |                   |                | 1'                          |                       |           | 172 Ice            | 4.029              | 2.289             | 0.109          |
|                         |                   |                | 1                           |                       |           | 2" Ice             | 4.585              | 2.785             | 0.173          |
| RRH2X60-AWS             | В                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 3.500              | 1.816             | 0.060          |
| 10012110011005          | 2                 | Trom Deg       | 0'                          | 0.000                 | 100       | 1/2" Ice           | 3.761              | 2.052             | 0.083          |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 4.029              | 2.289             | 0.109          |
|                         |                   |                |                             |                       |           | 2" Ice             | 4.585              | 2.785             | 0.173          |
| RRH2X60-AWS             | С                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 3.500              | 1.816             | 0.060          |
|                         |                   | -              | 0'                          |                       |           | 1/2" Ice           | 3.761              | 2.052             | 0.083          |
|                         |                   |                | 1'                          |                       |           | 1" Ice             | 4.029              | 2.289             | 0.109          |
|                         |                   |                |                             |                       |           | 2" Ice             | 4.585              | 2.785             | 0.173          |
| 5' x 2" Pipe Mount      | Α                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 1.188              | 1.188             | 0.018          |
|                         |                   |                | 0'                          |                       |           | 1/2" Ice           | 1.496              | 1.496             | 0.027          |
|                         |                   |                | 0'                          |                       |           | 1" Ice             | 1.807              | 1.807             | 0.040          |
|                         | -                 |                |                             |                       |           | 2" Ice             | 2.458              | 2.458             | 0.076          |
| 5' x 2" Pipe Mount      | В                 | From Leg       | 4.000                       | 0.000                 | 130'      | No Ice             | 1.188              | 1.188             | 0.018          |
|                         |                   |                | 0'                          |                       |           | 1/2" Ice           | 1.496              | 1.496             | 0.027          |
|                         |                   |                | 0'                          |                       |           | 1" Ice             | 1.807              | 1.807             | 0.040          |
| 51 - 2" Din - Marriet   | C                 | Ensue Las      | 4 000                       | 0.000                 | 1201      | 2" Ice             | 2.458              | 2.458             | 0.076          |
| 5' x 2" Pipe Mount      | С                 | From Leg       | 4.000<br>0'                 | 0.000                 | 130'      | No Ice<br>1/2" Ice | 1.188<br>1.496     | 1.188<br>1.496    | 0.018<br>0.027 |
|                         |                   |                | 0'                          |                       |           | 172 Ice            | 1.490              | 1.490             | 0.027          |
|                         |                   |                | 0                           |                       |           | 2" Ice             | 2.458              | 2.458             | 0.040          |
| Pipe Mount [PM 601-3]   | С                 | None           |                             | 0.000                 | 130'      | No Ice             | 3.170              | 3.170             | 0.195          |
| Tipe Mount [TW 001-5]   | C                 | None           |                             | 0.000                 | 150       | 1/2" Ice           | 3.790              | 3.790             | 0.232          |
|                         |                   |                |                             |                       |           | 1" Ice             | 4.420              | 4.420             | 0.279          |
|                         |                   |                |                             |                       |           | 2" Ice             | 5.760              | 5.760             | 0.401          |
| Sector Mount [SM 702-3] | С                 | None           |                             | 0.000                 | 130'      | No Ice             | 38.890             | 38.890            | 1.551          |
|                         |                   |                |                             |                       |           | 1/2" Ice           | 50.400             | 50.400            | 2.279          |
|                         |                   |                |                             |                       |           | 1" Ice             | 61.770             | 61.770            | 3.217          |
| *                       |                   |                |                             |                       |           | 2" Ice             | 84.350             | 84.350            | 5.705          |
| 1X08FRO665-21 w/ Mount  | А                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 8.009              | 4.233             | 0.108          |
| Pipe                    |                   | 2              | 0'                          |                       |           | 1/2" Ice           | 8.518              | 4.689             | 0.194          |
|                         |                   |                | 0'                          |                       |           | 1" Ice             | 9.038              | 5.156             | 0.292          |
|                         |                   |                |                             |                       |           | 2" Ice             | 10.109             | 6.122             | 0.522          |
| IX08FRO665-21 w/ Mount  | В                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 8.009              | 4.233             | 0.108          |
| Pipe                    |                   |                | 0'                          |                       |           | 1/2" Ice           | 8.518              | 4.689             | 0.194          |
|                         |                   |                | 0'                          |                       |           | 1" Ice             | 9.038              | 5.156             | 0.292          |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 21 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

#### Designed by Nithish Acharya

| Description            | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight           |
|------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|------------------|
|                        | 208               |                | Vert<br>ft<br>ft<br>ft      | 0                     | ft        |                    | $ft^2$             | ft²               | K                |
|                        |                   |                |                             |                       |           | 2" Ice             | 10.109             | 6.122             | 0.522            |
| MX08FRO665-21 w/ Mount | С                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 8.009              | 4.233             | 0.108            |
| Pipe                   |                   |                | 0'<br>0'                    |                       |           | 1/2" Ice<br>1" Ice | 8.518<br>9.038     | 4.689<br>5.156    | 0.194<br>0.292   |
|                        |                   |                | 0                           |                       |           | 2" Ice             | 9.038              | 6.122             | 0.292            |
| TA08025-B604           | А                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 1.964              | 0.981             | 0.064            |
| 11100020 2001          |                   | 110111 2005    | 0'                          | 01000                 |           | 1/2" Ice           | 2.138              | 1.112             | 0.081            |
|                        |                   |                | 0'                          |                       |           | 1" Ice             | 2.320              | 1.250             | 0.100            |
|                        |                   |                |                             |                       |           | 2" Ice             | 2.705              | 1.548             | 0.148            |
| TA08025-B604           | в                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 1.964              | 0.981             | 0.064            |
|                        |                   |                | 0'                          |                       |           | 1/2" Ice           | 2.138              | 1.112             | 0.081            |
|                        |                   |                | 0'                          |                       |           | 1" Ice             | 2.320              | 1.250             | 0.100            |
| TA02025 DC04           | C                 | г I            | 1 0 0 0                     | 0.000                 | 1221      | 2" Ice             | 2.705              | 1.548             | 0.148            |
| TA08025-B604           | С                 | From Leg       | 4.000<br>0'                 | 0.000                 | 122'      | No Ice<br>1/2" Ice | 1.964<br>2.138     | 0.981<br>1.112    | $0.064 \\ 0.081$ |
|                        |                   |                | 0'                          |                       |           | 1/2 ICC<br>1" Icc  | 2.138              | 1.112             | 0.081            |
|                        |                   |                | 0                           |                       |           | 2" Ice             | 2.705              | 1.548             | 0.100            |
| TA08025-B605           | А                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 1.964              | 1.129             | 0.075            |
|                        |                   | 8              | 0'                          |                       |           | 1/2" Ice           | 2.138              | 1.267             | 0.093            |
|                        |                   |                | 0'                          |                       |           | 1" Ice             | 2.320              | 1.411             | 0.114            |
|                        |                   |                |                             |                       |           | 2" Ice             | 2.705              | 1.723             | 0.164            |
| TA08025-B605           | В                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 1.964              | 1.129             | 0.075            |
|                        |                   |                | 0'                          |                       |           | 1/2" Ice           | 2.138              | 1.267             | 0.093            |
|                        |                   |                | 0'                          |                       |           | 1" Ice             | 2.320              | 1.411             | 0.114            |
| TA08025-B605           | С                 | Enom Lag       | 4.000                       | 0.000                 | 122'      | 2" Ice<br>No Ice   | 2.705<br>1.964     | 1.723<br>1.129    | 0.164<br>0.075   |
| TA08025-B605           | C                 | From Leg       | 4.000<br>0'                 | 0.000                 | 122       | 1/2" Ice           | 2.138              | 1.129             | 0.075            |
|                        |                   |                | 0'                          |                       |           | 172 ICC<br>1" Ice  | 2.320              | 1.411             | 0.093            |
|                        |                   |                | 0                           |                       |           | 2" Ice             | 2.705              | 1.723             | 0.164            |
| RDIDC-9181-PF-48       | А                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 2.012              | 1.168             | 0.022            |
|                        |                   | C              | 0'                          |                       |           | 1/2" Ice           | 2.189              | 1.311             | 0.040            |
|                        |                   |                | 0'                          |                       |           | 1" Ice             | 2.373              | 1.461             | 0.060            |
|                        |                   |                |                             |                       |           | 2" Ice             | 2.763              | 1.784             | 0.110            |
| (2) 8' x 2" Mount Pipe | А                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 1.900              | 1.900             | 0.029            |
|                        |                   |                | 0'                          |                       |           | 1/2" Ice           | 2.728              | 2.728             | 0.044            |
|                        |                   |                | 0'                          |                       |           | 1" Ice<br>2" Ice   | 3.401<br>4.396     | 3.401             | 0.063            |
| (2) 8' x 2" Mount Pipe | В                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 4.390              | 4.396<br>1.900    | 0.119<br>0.029   |
| (2) 6 x 2 Mount Tipe   | Б                 | 110III Leg     | 4.000<br>0'                 | 0.000                 | 122       | 1/2" Ice           | 2.728              | 2.728             | 0.044            |
|                        |                   |                | 0'                          |                       |           | 1" Ice             | 3.401              | 3.401             | 0.063            |
|                        |                   |                |                             |                       |           | 2" Ice             | 4.396              | 4.396             | 0.119            |
| (2) 8' x 2" Mount Pipe | С                 | From Leg       | 4.000                       | 0.000                 | 122'      | No Ice             | 1.900              | 1.900             | 0.029            |
|                        |                   |                | 0'                          |                       |           | 1/2" Ice           | 2.728              | 2.728             | 0.044            |
|                        |                   |                | 0'                          |                       |           | 1" Ice             | 3.401              | 3.401             | 0.063            |
| -                      | ~                 |                |                             |                       |           | 2" Ice             | 4.396              | 4.396             | 0.119            |
| Commscope MTC3975083   | С                 | None           |                             | 0.000                 | 122'      | No Ice             | 23.850             | 23.850            | 1.260            |
| (3)                    |                   |                |                             |                       |           | 1/2" Ice           | 34.120             | 34.120            | 1.803            |
|                        |                   |                |                             |                       |           | 1" Ice<br>2" Ice   | 44.390             | 44.390            | 2.345            |
| *                      |                   |                |                             |                       |           | 2 100              | 64.930             | 64.930            | 3.431            |
| ANT150F2               | А                 | From Face      | 4.000                       | 0.000                 | 104'      | No Ice             | 1.227              | 1.227             | 0.013            |
| 111113012              | 11                | 1101111 400    | 4.000<br>0'                 | 0.000                 | 107       | 1/2" Ice           | 1.530              | 1.530             | 0.013            |
|                        |                   |                | 2'                          |                       |           | 1" Ice             | 1.842              | 1.842             | 0.035            |
|                        |                   |                |                             |                       |           | 2" Ice             | 2.494              | 2.494             | 0.072            |
| AO8610-5T0             | А                 | From Face      | 4.000                       | 0.000                 | 104'      | No Ice             | 3.960              | 3.960             | 0.041            |
|                        |                   |                | 0'                          |                       |           | 1/2" Ice           | 5.638              | 5.638             | 0.071            |
|                        |                   |                | 8'                          |                       |           | 1" Ice             | 7.333              | 7.333             | 0.111            |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 22 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

| Description                 | Face<br>or | Offset<br>Type | Offsets:<br>Horz                  | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight           |
|-----------------------------|------------|----------------|-----------------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|------------------|
|                             | Leg        |                | Lateral<br>Vert<br>ft<br>ft<br>ft | 0                     | ft        |                    | ft <sup>2</sup>    | ft²               | K                |
|                             |            |                | Ji                                |                       |           | 2" Ice             | 10.773             | 10.773            | 0.223            |
| K751221                     | А          | From Face      | 4.000                             | 0.000                 | 104'      | No Ice             | 0.314              | 0.314             | 0.004            |
|                             |            |                | 0'<br>3'                          |                       |           | 1/2" Ice           | 0.445              | 0.445             | 0.008            |
|                             |            |                | 3                                 |                       |           | 1" Ice<br>2" Ice   | 0.585<br>0.894     | 0.585<br>0.894    | 0.013<br>0.028   |
| SRL-210C-4                  | В          | From Face      | 4.000                             | 0.000                 | 104'      | No Ice             | 1.000              | 1.000             | 0.020            |
|                             |            |                | 0'                                |                       |           | 1/2" Ice           | 1.800              | 1.800             | 0.077            |
|                             |            |                | 10'                               |                       |           | 1" Ice             | 2.600              | 2.600             | 0.094            |
|                             | D          | <b>F F</b>     | 1.000                             | 0.000                 | 10.4      | 2" Ice             | 4.200              | 4.200             | 0.130            |
| ANT150F6                    | В          | From Face      | 4.000<br>0'                       | 0.000                 | 104'      | No Ice<br>1/2" Ice | 4.800<br>6.828     | 4.800<br>6.828    | $0.030 \\ 0.066$ |
|                             |            |                | 12'                               |                       |           | 172 Ice            | 8.873              | 8.873             | 0.000            |
|                             |            |                | 12                                |                       |           | 2" Ice             | 13.013             | 13.013            | 0.249            |
| PD220-5                     | В          | From Face      | 4.000                             | 0.000                 | 104'      | No Ice             | 6.050              | 6.050             | 0.023            |
|                             |            |                | 0'                                |                       |           | 1/2" Ice           | 8.281              | 8.281             | 0.067            |
|                             |            |                | 13'                               |                       |           | 1" Ice             | 10.529             | 10.529            | 0.125            |
| AO8610-5T0                  | С          | From Face      | 4.000                             | 0.000                 | 104'      | 2" Ice<br>No Ice   | 15.075<br>3.960    | 15.075<br>3.960   | 0.283<br>0.041   |
| A00010-510                  | C          | 1 Iom 1 acc    | 4.000<br>0'                       | 0.000                 | 104       | 1/2" Ice           | 5.638              | 5.638             | 0.071            |
|                             |            |                | 8'                                |                       |           | 1" Ice             | 7.333              | 7.333             | 0.111            |
|                             |            |                |                                   |                       |           | 2" Ice             | 10.773             | 10.773            | 0.223            |
| 10191                       | С          | From Face      | 4.000                             | 0.000                 | 104'      | No Ice             | 0.640              | 0.640             | 0.005            |
|                             |            |                | 0'<br>2'                          |                       |           | 1/2" Ice           | 0.941              | 0.941             | 0.010            |
|                             |            |                | 2                                 |                       |           | 1" Ice<br>2" Ice   | 1.191<br>1.720     | 1.191<br>1.720    | 0.018<br>0.043   |
| DB540K-F                    | С          | From Face      | 4.000                             | 0.000                 | 104'      | No Ice             | 4.500              | 4.500             | 0.045            |
|                             |            |                | 0'                                |                       |           | 1/2" Ice           | 6.329              | 6.329             | 0.099            |
|                             |            |                | 9'                                |                       |           | 1" Ice             | 8.175              | 8.175             | 0.144            |
|                             |            | <b>F F</b>     | 1 0 0 0                           | 0.000                 | 10.4      | 2" Ice             | 11.917             | 11.917            | 0.268            |
| (4) 6' x 2" Mount Pipe      | Α          | From Face      | 4.000<br>0'                       | 0.000                 | 104'      | No Ice<br>1/2" Ice | 1.425<br>1.925     | 1.425<br>1.925    | 0.022<br>0.033   |
|                             |            |                | 0'                                |                       |           | 172 Icc<br>1" Ice  | 2.294              | 2.294             | 0.033            |
|                             |            |                | Ŭ                                 |                       |           | 2" Ice             | 3.060              | 3.060             | 0.090            |
| (4) 6' x 2" Mount Pipe      | В          | From Face      | 4.000                             | 0.000                 | 104'      | No Ice             | 1.425              | 1.425             | 0.022            |
|                             |            |                | 0'                                |                       |           | 1/2" Ice           | 1.925              | 1.925             | 0.033            |
|                             |            |                | 0'                                |                       |           | 1" Ice             | 2.294              | 2.294             | 0.048            |
| (4) 6' x 2" Mount Pipe      | С          | From Face      | 4.000                             | 0.000                 | 104'      | 2" Ice<br>No Ice   | 3.060<br>1.425     | 3.060<br>1.425    | $0.090 \\ 0.022$ |
| (4) 0 x 2 Would Tipe        | C          | 110m1 acc      | 4.000<br>0'                       | 0.000                 | 104       | 1/2" Ice           | 1.925              | 1.925             | 0.022            |
|                             |            |                | 0'                                |                       |           | 1" Ice             | 2.294              | 2.294             | 0.048            |
|                             |            |                |                                   |                       |           | 2" Ice             | 3.060              | 3.060             | 0.090            |
| 6' x 2.375" Mount Pipe      | С          | From Face      | 4.000                             | 0.000                 | 104'      | No Ice             | 1.425              | 1.425             | 0.041            |
|                             |            |                | 0'<br>0'                          |                       |           | 1/2" Ice<br>1" Ice | 1.925<br>2.294     | 1.925<br>2.294    | $0.051 \\ 0.066$ |
|                             |            |                | 0                                 |                       |           | 2" Ice             | 3.060              | 3.060             | 0.000            |
| 6' x 2.375" Mount Pipe      | А          | From Face      | 4.000                             | 0.000                 | 104'      | No Ice             | 1.425              | 1.425             | 0.041            |
| 1                           |            |                | 0'                                |                       |           | 1/2" Ice           | 1.925              | 1.925             | 0.051            |
|                             |            |                | 0'                                |                       |           | 1" Ice             | 2.294              | 2.294             | 0.066            |
| abre 30' Specialty Platform | C          | None           |                                   | 0.000                 | 104       | 2" Ice             | 3.060              | 3.060             | 0.109            |
| abre 50 Specialty Platform  | С          | None           |                                   | 0.000                 | 104'      | No Ice<br>1/2" Ice | 75.000<br>87.000   | 75.000<br>87.000  | 3.020<br>3.620   |
|                             |            |                |                                   |                       |           | 172 Ice<br>1" Ice  | 99.000             | 99.000            | 4.220            |
|                             |            |                |                                   |                       |           | 2" Ice             | 123.000            | 123.000           | 5.420            |
| *                           |            |                | 1.000                             | 0.000                 | 04        |                    | 2 1 6 2            | 1.0==             | 0.000            |
| ERICSSON AIR 21 B4A<br>B2P  | А          | From Leg       | 4.000<br>0'                       | 0.000                 | 96'       | No Ice<br>1/2" Ice | 3.193<br>3.518     | 1.977<br>2.281    | 0.090<br>0.132   |
|                             |            |                |                                   |                       |           |                    |                    |                   |                  |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 23 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

| Description          | Face<br>or | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                    | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weigh          |
|----------------------|------------|----------------|-----------------------------|-----------------------|-----------|--------------------|--------------------|-------------------|----------------|
|                      | Leg        |                | Vert<br>ft                  | o                     | ft        |                    | $ft^2$             | ft <sup>2</sup>   | K              |
|                      |            |                | ft<br>ft                    |                       | <u>,</u>  |                    | 5                  | 5                 |                |
|                      |            |                | 0                           |                       |           | 2" Ice             | 4.549              | 3.246             | 0.289          |
| ERICSSON AIR 21 B4A  | В          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 3.193              | 1.977             | 0.090          |
| B2P                  |            |                | 0'                          |                       |           | 1/2" Ice           | 3.518              | 2.281             | 0.132          |
|                      |            |                | 1'                          |                       |           | 1" Ice             | 3.852              | 2.593             | 0.179          |
|                      |            |                |                             |                       |           | 2" Ice             | 4.549              | 3.246             | 0.289          |
| ERICSSON AIR 21 B4A  | С          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 3.193              | 1.977             | 0.090          |
| B2P                  |            |                | 0'                          |                       |           | 1/2" Ice           | 3.518              | 2.281             | 0.132          |
|                      |            |                | 1'                          |                       |           | 1" Ice             | 3.852              | 2.593             | 0.179          |
| DYUAADDO4 42 U.NAOO  |            | Ensue Las      | 4 000                       | 0.000                 | 0.01      | 2" Ice             | 4.549              | 3.246             | 0.289          |
| APXVAARR24_43-U-NA20 | А          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice<br>1/2" Ice | 14.694<br>15.455   | 6.873<br>7.554    | 0.180          |
| w/ Mount Pipe        |            |                | 0'<br>1'                    |                       |           | 172 Ice            | 16.230             | 8.247             | 0.315<br>0.458 |
|                      |            |                | 1                           |                       |           | 2" Ice             | 17.816             | 8.247<br>9.670    | 0.438          |
| APXVAARR24 43-U-NA20 | В          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 14.694             | 6.873             | 0.186          |
| w/ Mount Pipe        | Б          | 110111 Leg     | 4.000<br>0'                 | 0.000                 | 70        | 1/2" Ice           | 15.455             | 7.554             | 0.315          |
| w would he he        |            |                | 1'                          |                       |           | 1" Ice             | 16.230             | 8.247             | 0.458          |
|                      |            |                | -                           |                       |           | 2" Ice             | 17.816             | 9.670             | 0.788          |
| APXVAARR24 43-U-NA20 | С          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 14.694             | 6.873             | 0.186          |
| w/ Mount Pipe        |            | 6              | 0'                          |                       |           | 1/2" Ice           | 15.455             | 7.554             | 0.315          |
| 1                    |            |                | 1'                          |                       |           | 1" Ice             | 16.230             | 8.247             | 0.458          |
|                      |            |                |                             |                       |           | 2" Ice             | 17.816             | 9.670             | 0.788          |
| RRUS 11 B2           | А          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 2.833              | 1.182             | 0.051          |
|                      |            | -              | 0'                          |                       |           | 1/2" Ice           | 3.043              | 1.330             | 0.072          |
|                      |            |                | 1'                          |                       |           | 1" Ice             | 3.259              | 1.485             | 0.09           |
|                      |            |                |                             |                       |           | 2" Ice             | 3.715              | 1.826             | 0.153          |
| RRUS 11 B2           | В          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 2.833              | 1.182             | 0.051          |
|                      |            |                | 0'                          |                       |           | 1/2" Ice           | 3.043              | 1.330             | 0.072          |
|                      |            |                | 1'                          |                       |           | 1" Ice             | 3.259              | 1.485             | 0.095          |
|                      | ~          |                | 1 0 0 0                     | 0.000                 | 0.0       | 2" Ice             | 3.715              | 1.826             | 0.153          |
| RRUS 11 B2           | С          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 2.833              | 1.182             | 0.051          |
|                      |            |                | 0'                          |                       |           | 1/2" Ice           | 3.043              | 1.330             | 0.072          |
|                      |            |                | 1'                          |                       |           | 1" Ice             | 3.259              | 1.485             | 0.093          |
| ATM1900D-1A20        | А          | From Log       | 4.000                       | 0.000                 | 96'       | 2" Ice<br>No Ice   | 3.715<br>0.717     | 1.826<br>0.192    | 0.153          |
| A1M1900D-1A20        | A          | From Leg       | 4.000                       | 0.000                 | 90        | 1/2" Ice           | 0.717              | 0.192             | 0.003          |
|                      |            |                | 1'                          |                       |           | 172 Ice            | 0.824              | 0.235             | 0.01           |
|                      |            |                | 1                           |                       |           | 2" Ice             | 1.189              | 0.320             | 0.020          |
| ATM1900D-1A20        | В          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 0.717              | 0.192             | 0.008          |
| MIM1900D 1120        | Б          | Tiom Leg       | 0'                          | 0.000                 | 70        | 1/2" Ice           | 0.824              | 0.255             | 0.000          |
|                      |            |                | 1'                          |                       |           | 1" Ice             | 0.938              | 0.326             | 0.020          |
|                      |            |                | -                           |                       |           | 2" Ice             | 1.189              | 0.494             | 0.039          |
| ATM1900D-1A20        | С          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 0.717              | 0.192             | 0.008          |
|                      |            | U              | 0'                          |                       |           | 1/2" Ice           | 0.824              | 0.255             | 0.013          |
|                      |            |                | 1'                          |                       |           | 1" Ice             | 0.938              | 0.326             | 0.020          |
|                      |            |                |                             |                       |           | 2" Ice             | 1.189              | 0.494             | 0.039          |
| RADIO 4449 B12/B71   | А          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 1.650              | 1.163             | 0.074          |
|                      |            |                | 0'                          |                       |           | 1/2" Ice           | 1.810              | 1.301             | 0.090          |
|                      |            |                | 1'                          |                       |           | 1" Ice             | 1.978              | 1.447             | 0.109          |
|                      | -          |                |                             |                       |           | 2" Ice             | 2.336              | 1.762             | 0.15           |
| RADIO 4449 B12/B71   | В          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 1.650              | 1.163             | 0.074          |
|                      |            |                | 0'                          |                       |           | 1/2" Ice           | 1.810              | 1.301             | 0.090          |
|                      |            |                | 1'                          |                       |           | 1" Ice             | 1.978              | 1.447             | 0.109          |
| DADIO 4440 D10/071   | C          | E              | 4 000                       | 0.000                 | 07        | 2" Ice             | 2.336              | 1.762             | 0.155          |
| RADIO 4449 B12/B71   | С          | From Leg       | 4.000                       | 0.000                 | 96'       | No Ice             | 1.650              | 1.163             | 0.074          |
|                      |            |                | 01                          |                       |           |                    |                    |                   |                |
|                      |            |                | 0'<br>1'                    |                       |           | 1/2" Ice<br>1" Ice | 1.810<br>1.978     | 1.301<br>1.447    | 0.090          |

Page 24 of 39

Date

Project

Job

Client

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

14:41:12 09/21/22

| Description               | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |                                        | $C_A A_A$<br>Front                   | $C_A A_A$<br>Side                    | Weight                                    |
|---------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|----------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|
|                           |                   |                | Vert<br>ft<br>ft<br>ft      | o                     | ft        |                                        | ft <sup>2</sup>                      | $ft^2$                               | Κ                                         |
| Sector Mount [SM 403-3]   | С                 | None           | <u> </u>                    | 0.000                 | 96'       | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 19.400<br>27.200<br>34.930<br>50.180 | 19.400<br>27.200<br>34.930<br>50.180 | 0.873<br>1.244<br>1.744<br>3.131          |
| Side Arm Mount [SO 201-1] | С                 | From Leg       | 0.500<br>0'<br>0'           | 0.000                 | 87'       | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 1.780<br>2.240<br>2.750<br>3.890     | 2.610<br>3.150<br>3.730<br>4.990     | 0.096<br>0.116<br>0.144<br>0.221          |
| GPS-TMG-HR-26N            | С                 | From Leg       | 3.000<br>0'<br>2'           | 0.000                 | 71'       | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 0.208<br>0.268<br>0.334<br>0.490     | 0.133<br>0.183<br>0.239<br>0.375     | 0.001<br>0.003<br>0.006<br>0.017          |
| 6' x 2" Mount Pipe        | С                 | From Leg       | 3.000<br>0'<br>0'           | 0.000                 | 71'       | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 1.425<br>1.925<br>2.294<br>3.060     | 1.425<br>1.925<br>2.294<br>3.060     | 0.017<br>0.022<br>0.033<br>0.048<br>0.090 |
| Side Arm Mount [SO 601-1] | С                 | From Leg       | 1.500<br>0'<br>0'           | 0.000                 | 71'       | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 1.040<br>1.410<br>1.780<br>2.520     | 5.320<br>6.430<br>7.670<br>10.670    | 0.159<br>0.196<br>0.241<br>0.359          |
| *                         |                   |                |                             |                       |           | 2 100                                  | 2.320                                | 10.670                               | 0.559                                     |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |
| *                         |                   |                |                             |                       |           |                                        |                                      |                                      |                                           |

**Dishes** Dish Offset Offsets: Azimuth 3 dB Elevation Outside Weight Description Face Aperture Beam orTypeType HorzAdjustment Diameter Area Leg Lateral Width Vert 0 0 ft  $ft^2$ ft ft Κ Andrew PAR6-59A С Paraboloid 11.000 139' 6.000 28.274 0.143 From 0.500 No Ice 1/2" Ice 1" Ice 0' 29.065 0.292 w/Radome Leg -1' 29.856 0.441 2" Ice 0.740 31.438 \* COMMSCOPE С Paraboloid From 4.000 -19.000 104' 4.108 No Ice 13.256 0.088 1/2" Ice 1" Ice VHLPX4-11W-6WH 0.159 w/Shroud (HP) Face 0' 13.800 2' 14.343 0.230 2" Ice 15.429 0.371

| tnxTower                                                        | Јов<br>100736.010.01.0001 - TRURO, MA (BU# 841273) | Page 25 of 39                  |
|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------|
| <b>B+T Group</b><br>1717 S, Boulder, Suite 300                  | Project                                            | Date<br>14:41:12 09/21/22      |
| Tulsa, OK 74119<br>Phone: (918) 587-4630<br>FAX: (918) 587-4630 | Client<br>Crown Castle                             | Designed by<br>Nithish Acharya |

| Description                      | Face<br>or<br>Leg | Dish<br>Type                | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |                                        | Aperture<br>Area                     | Weight                           |
|----------------------------------|-------------------|-----------------------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|----------------------------------------|--------------------------------------|----------------------------------|
|                                  |                   |                             |                | ft                                  | 0                     | 0                     | ft        | ft                  |                                        | $ft^2$                               | Κ                                |
| COMMSCOPE<br>VHLPX4-11W-6WH<br>* | A                 | Paraboloid<br>w/Shroud (HP) | From<br>Face   | 4.000<br>0'<br>2'                   | 1.000                 |                       | 104'      | 4.108               | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 13.256<br>13.800<br>14.343<br>15.429 | 0.088<br>0.159<br>0.230<br>0.371 |
| PR-950<br>*                      | С                 | Grid                        | From<br>Leg    | 1.500<br>0'<br>0'                   | 1.000                 |                       | 87'       | 5.667               | No Ice<br>1/2" Ice<br>1" Ice<br>2" Ice | 25.220<br>25.967<br>26.714<br>28.209 | 0.038<br>0.171<br>0.305<br>0.571 |

### Load Combinations

| Description                                |
|--------------------------------------------|
|                                            |
| Dead Only                                  |
| 1.2 Dead+1.0 Wind 0 deg - No Ice           |
| 0.9 Dead+1.0 Wind 0 deg - No Ice           |
| 1.2 Dead+1.0 Wind 30 deg - No Ice          |
| 0.9 Dead+1.0 Wind 30 deg - No Ice          |
| 1.2 Dead+1.0 Wind 60 deg - No Ice          |
| 0.9 Dead+1.0 Wind 60 deg - No Ice          |
| 1.2 Dead+1.0 Wind 90 deg - No Ice          |
| 0.9 Dead+1.0 Wind 90 deg - No Ice          |
| 1.2 Dead+1.0 Wind 120 deg - No Ice         |
| 0.9 Dead+1.0 Wind 120 deg - No Ice         |
| 1.2 Dead+1.0 Wind 150 deg - No Ice         |
| 0.9 Dead+1.0 Wind 150 deg - No Ice         |
| 1.2 Dead+1.0 Wind 180 deg - No Ice         |
| 0.9 Dead+1.0 Wind 180 deg - No Ice         |
| 1.2 Dead+1.0 Wind 210 deg - No Ice         |
| 0.9 Dead+1.0 Wind 210 deg - No Ice         |
| 1.2 Dead+1.0 Wind 240 deg - No Ice         |
| 0.9 Dead+1.0 Wind 240 deg - No Ice         |
| 1.2 Dead+1.0 Wind 270 deg - No Ice         |
| 0.9 Dead+1.0 Wind 270 deg - No Ice         |
| 1.2 Dead+1.0 Wind 300 deg - No Ice         |
| 0.9 Dead+1.0 Wind 300 deg - No Ice         |
| 1.2 Dead+1.0 Wind 330 deg - No Ice         |
| 0.9 Dead+1.0 Wind 330 deg - No Ice         |
| 1.2 Dead+1.0 Ice+1.0 Temp                  |
| 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp   |
| 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp  |
| 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp  |
| 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp  |
| 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp |
| 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp |
| 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp |
| 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp |
| 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp |
| 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp |
| 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp |
| 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp |
| Dead+Wind 0 deg - Service                  |
| Dead+Wind 30 deg - Service                 |
| Dead+Wind 60 deg - Service                 |
|                                            |

| tnxTower |
|----------|
|          |

Job

Project

Client

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

~

Crown Castle

#### Designed by Nithish Acharya

| Comb. | Description                 |
|-------|-----------------------------|
| No.   |                             |
| 42    | Dead+Wind 90 deg - Service  |
| 43    | Dead+Wind 120 deg - Service |
| 44    | Dead+Wind 150 deg - Service |
| 45    | Dead+Wind 180 deg - Service |
| 46    | Dead+Wind 210 deg - Service |
| 47    | Dead+Wind 240 deg - Service |
| 48    | Dead+Wind 270 deg - Service |
| 49    | Dead+Wind 300 deg - Service |
| 50    | Dead+Wind 330 deg - Service |

## **Maximum Member Forces**

| Section | Elevation | Component | Condition        | Gov.  | Axial    | Major Axis | Minor Axis |
|---------|-----------|-----------|------------------|-------|----------|------------|------------|
| No.     | ft        | Type      |                  | Load  |          | Moment     | Moment     |
|         |           |           |                  | Comb. | K        | kip-ft     | kip-ft     |
| T1      | 170 - 160 | Leg       | Max Tension      | 23    | 4.300    | -1.078     | 0.020      |
|         |           | -         | Max. Compression | 18    | -7.736   | -0.312     | -0.037     |
|         |           |           | Max. Mx          | 14    | -0.016   | 2.307      | -0.020     |
|         |           |           | Max. My          | 8     | -1.641   | -0.044     | -2.262     |
|         |           |           | Max. Vy          | 6     | -1.238   | 0.000      | 0.000      |
|         |           |           | Max. Vx          | 12    | -1.275   | 0.000      | 0.000      |
|         |           | Diagonal  | Max Tension      | 4     | 3.333    | 0.000      | 0.000      |
|         |           |           | Max. Compression | 16    | -3.354   | 0.000      | 0.000      |
|         |           |           | Max. Mx          | 32    | 0.363    | 0.051      | 0.006      |
|         |           |           | Max. My          | 30    | -0.871   | 0.049      | -0.007     |
|         |           |           | Max. Vy          | 32    | 0.050    | 0.051      | 0.006      |
|         |           |           | Max. Vx          | 30    | 0.003    | 0.000      | 0.000      |
|         |           | Top Girt  | Max Tension      | 19    | 0.248    | 0.000      | 0.000      |
|         |           |           | Max. Compression | 14    | -0.291   | 0.000      | 0.000      |
|         |           |           | Max. Mx          | 26    | -0.077   | -0.141     | 0.000      |
|         |           |           | Max. My          | 26    | -0.074   | 0.000      | 0.004      |
|         |           |           | Max. Vy          | 26    | 0.071    | 0.000      | 0.000      |
|         |           |           | Max. Vx          | 26    | -0.002   | 0.000      | 0.000      |
| T2      | 160 - 140 | Leg       | Max Tension      | 15    | 31.017   | -1.419     | 0.025      |
|         |           | -         | Max. Compression | 18    | -40.935  | 0.864      | -0.106     |
|         |           |           | Max. Mx          | 22    | 18.211   | -1.532     | 0.181      |
|         |           |           | Max. My          | 21    | -1.678   | -0.033     | 1.507      |
|         |           |           | Max. Vy          | 22    | -1.747   | -1.532     | 0.181      |
|         |           |           | Max. Vx          | 12    | -1.744   | 0.027      | 0.356      |
|         |           | Diagonal  | Max Tension      | 8     | 8.793    | 0.000      | 0.000      |
|         |           | -         | Max. Compression | 20    | -8.889   | 0.000      | 0.000      |
|         |           |           | Max. Mx          | 36    | 1.708    | 0.109      | -0.012     |
|         |           |           | Max. My          | 22    | -7.787   | 0.030      | 0.017      |
|         |           |           | Max. Vy          | 33    | 0.083    | 0.105      | -0.014     |
|         |           |           | Max. Vx          | 37    | -0.005   | 0.000      | 0.000      |
| T3      | 140 - 120 | Leg       | Max Tension      | 7     | 75.895   | -1.530     | 0.036      |
|         |           | C         | Max. Compression | 18    | -95.003  | 1.372      | -0.004     |
|         |           |           | Max. Mx          | 14    | 56.172   | 1.959      | 0.005      |
|         |           |           | Max. My          | 24    | -9.097   | -0.101     | -1.949     |
|         |           |           | Max. Vy          | 14    | 1.120    | -1.584     | 0.005      |
|         |           |           | Max. Vx          | 20    | 1.190    | -0.113     | -1.848     |
|         |           | Diagonal  | Max Tension      | 8     | 12.756   | 0.000      | 0.000      |
|         |           | U         | Max. Compression | 8     | -12.897  | 0.000      | 0.000      |
|         |           |           | Max. Mx          | 35    | 2.078    | 0.173      | -0.020     |
|         |           |           | Max. My          | 10    | -11.093  | 0.033      | -0.022     |
|         |           |           | Max. Vy          | 33    | 0.111    | 0.162      | 0.019      |
|         |           |           | Max. Vx          | 32    | 0.006    | 0.000      | 0.000      |
| T4      | 120 - 100 | Leg       | Max Tension      | 15    | 130.846  | -1.525     | 0.005      |
|         |           | 8         | Max. Compression | 10    | -160.765 | 4.329      | -0.187     |



Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

14:41:12 09/21/22 Designed by Nithish Acharya

| Elevation    | Component                                                                            | Condition                                                                                                                        | Gov.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Major Axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minor Axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ft           | Type                                                                                 |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | May My                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kip-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.138<br>-4.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | Diagonal                                                                             | Max Tension                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | e                                                                                    | Max. Compression                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -15.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | Max. Mx                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | Max. My                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | •                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100.00       |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100 - 80     | Leg                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.268<br>0.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | •                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | -                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | Diagonal                                                                             | Max Tension                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | e                                                                                    | Max. Compression                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -21.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | Max. Mx                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | Max. My                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -19.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | -                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00 60        |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80 - 60      | Leg                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | -                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.044<br>-4.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                      | •                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | 5                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | Diagonal                                                                             | Max Tension                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | e                                                                                    | Max. Compression                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -22.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | Max. Mx                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | Max. My                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4.565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | 5                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 60 40        | ×                                                                                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 60 - 40      | Leg                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | 1                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.003<br>-0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | •                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | Max. Vx                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -6.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | Diagonal                                                                             | Max Tension                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | -                                                                                    | Max. Compression                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -24.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | Max. Mx                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | Max. My                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -5.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | Max. Vy                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40 20        | T                                                                                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40 - 20      | Leg                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | 1                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.705<br>-0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | •                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | -                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -11.612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Diagonal                                                                             | Max Tension                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | -                                                                                    | Max. Compression                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -26.567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | Max. Mx                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      |                                                                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | Max. Vy                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>2</b> 0 ° |                                                                                      | Max. Vx                                                                                                                          | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20 - 0       | Leg                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                      | -                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                      | Max. Mx                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -523.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | <i>Elevation</i><br><i>ft</i><br>100 - 80<br>80 - 60<br>60 - 40<br>40 - 20<br>20 - 0 | ft Type<br>Diagonal<br>100 - 80 Leg<br>Diagonal<br>80 - 60 Leg<br>Diagonal<br>60 - 40 Leg<br>Diagonal<br>40 - 20 Leg<br>Diagonal | ftTypeDiagonalMax. Mx<br>Max. Vy<br>Max. Vx<br>Max. Vx<br>Max. VxDiagonalMax Tension<br>Max. Compression<br>Max. Mx<br>Max. Vy<br>Max. Vy<br> | ft         Type         Load<br>Comb.           Max. Mx         3           Max. Wy         12           Max. Vy         22           Max. Vx         24           Max. Vy         22           Max. Vx         24           Max. Vy         22           Max. Vx         24           Max. Compression         4           Max. Compression         4           Max. Compression         16           Max. Vy         33           Max. Vy         33           Max. Vx         37           Max. Mx         37           Max. My         12           Max. My         10           Max. Vy         33           Max. Ny         10           Max. Ny         10           Max. Ny         10           Max. My         12           Max. My         12           Max. My         12           Max. My         13           Max. Ny         12 | ft         Type         Load<br>Comb.         K           Max. Mx         3         -155.873           Max. Ny         12         -12.613           Max. Vy         22         1.440           Max. Vy         22         1.440           Max. Vy         22         1.539           Max Tension         4         -15.693           Max. My         37         -2.999           Max. My         37         -2.999           Max. My         37         -2.099           Max. My         37         -0.007           Max Tension         15         192.757           Max. My         12         -1.118           Max. Ny         12         -1.118           Max. Vy         22         -1.118           Max. Ny         10         -19.610           Max. Ny         10         -19.610           Max. Ny         12         -20.433           Max. Compression         4         -22.043           Max. Compression         4         -22.78           Max. Compression         4         -22.481           Max. Compression         4         -22.481           Max. Compression | ft         Type         Load<br>Comb         Max.<br>Kppf           Max. My         3         -155.873         4.349           Max. My         12         -12.013         -0.106           Max. Vy         21         -12.013         -0.106           Max. Vy         22         1.440         -4.309           Max. Compression         4         -15.693         0.000           Max. My         37         -2.999         0.212           Max. My         37         -0.007         0.000           Max. My         37         -0.007         0.000           Max. Compression         10         -231.538         3.814           Max. Ny         12         -12.096         -0.106           Max. Compression         10         -231.538         3.814           Max. Ny         12         -1.118         -4.309           Max. Mx         3         -185.793         4.349           Max. Ny         12         -12.996         -0.016           Max. Compression         4         -20.943         0.000           Max. My         10         -9.101.46         -565           Max. My         10         -9.101.46         -565 |



Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

#### Designed by Nithish Acharya

14:41:12 09/21/22

| Section | Elevation | Component                | Condition        | Gov.  | Axial   | Major Axis | Minor Axis |
|---------|-----------|--------------------------|------------------|-------|---------|------------|------------|
| No.     | ft        | Type                     |                  | Load  |         | Moment     | Moment     |
|         |           |                          |                  | Comb. | K       | kip-ft     | kip-ft     |
|         |           |                          | Max. My          | 12    | -31.800 | -2.021     | -11.305    |
|         |           |                          | Max. Vy          | 10    | -5.196  | 21.235     | 0.467      |
|         |           |                          | Max. Vx          | 12    | -2.815  | -2.021     | -11.305    |
|         |           | Diagonal                 | Max Tension      | 5     | 31.906  | -0.024     | -0.021     |
|         |           | -                        | Max. Compression | 2     | -34.851 | 0.000      | 0.000      |
|         |           |                          | Max. Mx          | 12    | -18.489 | 0.400      | -0.029     |
|         |           |                          | Max. My          | 37    | -2.063  | 0.157      | 0.052      |
|         |           |                          | Max. Vy          | 30    | -0.159  | 0.242      | 0.052      |
|         |           |                          | Max. Vx          | 31    | 0.011   | 0.000      | 0.000      |
|         |           | Horizontal               | Max Tension      | 2     | 24.002  | -0.272     | -0.044     |
|         |           |                          | Max. Compression | 2     | -25.174 | -0.291     | -0.053     |
|         |           |                          | Max. Mx          | 33    | 0.682   | -0.537     | -0.003     |
|         |           |                          | Max. My          | 2     | 4.010   | -0.219     | 0.129      |
|         |           |                          | Max. Vy          | 33    | -0.229  | -0.503     | -0.015     |
|         |           |                          | Max. Vx          | 2     | 0.013   | -0.219     | 0.129      |
|         |           | Redund Horz 1<br>Bracing | Max Tension      | 16    | 6.039   | 0.000      | 0.000      |
|         |           |                          | Max. Compression | 5     | -4.802  | 0.000      | 0.000      |
|         |           |                          | Max. Mx          | 26    | 0.412   | -0.083     | 0.000      |
|         |           |                          | Max. My          | 26    | 0.467   | 0.000      | 0.002      |
|         |           |                          | Max. Vy          | 26    | 0.055   | 0.000      | 0.000      |
|         |           |                          | Max. Vx          | 26    | -0.002  | 0.000      | 0.000      |
|         |           | Redund Diag 1<br>Bracing | Max Tension      | 5     | 3.276   | 0.000      | 0.000      |
|         |           | e                        | Max. Compression | 16    | -3.726  | 0.000      | 0.000      |
|         |           |                          | Max. Mx          | 26    | 0.242   | -0.093     | 0.000      |
|         |           |                          | Max. My          | 26    | 0.193   | 0.000      | 0.004      |
|         |           |                          | Max. Vy          | 26    | -0.049  | 0.000      | 0.000      |
|         |           |                          | Max. Vx          | 26    | -0.002  | 0.000      | 0.000      |
|         |           | Inner Bracing            | Max Tension      | 3     | 0.014   | 0.000      | 0.000      |
|         |           | 0                        | Max. Compression | 14    | -0.034  | 0.000      | 0.000      |
|         |           |                          | Max. Mx          | 26    | -0.023  | -0.278     | 0.000      |
|         |           |                          | Max. Vy          | 26    | 0.093   | 0.000      | 0.000      |

### **Maximum Reactions**

| Location | Condition           | Gov.  | Vertical | Horizontal, X | Horizontal, Z |
|----------|---------------------|-------|----------|---------------|---------------|
|          |                     | Load  | Κ        | Κ             | Κ             |
|          |                     | Comb. |          |               |               |
| Leg C    | Max. Vert           | 18    | 537.298  | 58.063        | -33.522       |
| 8 -      | Max. H <sub>x</sub> | 18    | 537.298  | 58.063        | -33.522       |
|          | Max. Hz             | 5     | -397.992 | -42.379       | 31.911        |
|          | Min. Vert           | 7     | -444.410 | -50.332       | 29.020        |
|          | Min. H <sub>x</sub> | 7     | -444.410 | -50.332       | 29.020        |
|          | Min. H <sub>z</sub> | 16    | 466.646  | 47.013        | -34.480       |
| Leg B    | Max. Vert           | 10    | 555.928  | -61.607       | -33.983       |
|          | Max. H <sub>x</sub> | 23    | -460.306 | 53.443        | 29.359        |
|          | Max. Hz             | 25    | -414.789 | 46.172        | 31.776        |
|          | Min. Vert           | 23    | -460.306 | 53.443        | 29.359        |
|          | Min. H <sub>x</sub> | 10    | 555.928  | -61.607       | -33.983       |
|          | Min. H <sub>z</sub> | 12    | 485.608  | -51.118       | -34.561       |
| Leg A    | Max. Vert           | 2     | 564.237  | -1.598        | 72.278        |
| -        | Max. H <sub>x</sub> | 21    | 29.434   | 10.428        | 2.536         |
|          | Max. H <sub>z</sub> | 2     | 564.237  | -1.598        | 72.278        |
|          | Min. Vert           | 15    | -472.602 | 1.533         | -63.036       |
|          | Min. H <sub>x</sub> | 8     | 36.636   | -10.473       | 2.919         |
|          | Min. Hz             | 15    | -472.602 | 1.533         | -63.036       |

| tnxTower                                                        | Јов<br>100736.010.01.0001 - TRURO, MA (BU# 841273) | Page 29 of 39                  |
|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------|
| <b>B+T Group</b><br>1717 S, Boulder, Suite 300                  | Project                                            | Date<br>14:41:12 09/21/22      |
| Tulsa, OK 74119<br>Phone: (918) 587-4630<br>FAX: (918) 587-4630 | Client<br>Crown Castle                             | Designed by<br>Nithish Acharya |

Horizontal, X K

Location

Gov. Load Comb.

Condition

Vertical K Horizontal, Z K

|                                                          | on Summ            | ary                     |                         |                                                 |                                                 |                  |
|----------------------------------------------------------|--------------------|-------------------------|-------------------------|-------------------------------------------------|-------------------------------------------------|------------------|
| Load<br>Combination                                      | Vertical<br>K      | Shear <sub>x</sub><br>K | Shear <sub>z</sub><br>K | Overturning<br>Moment, M <sub>x</sub><br>kip-ft | Overturning<br>Moment, M <sub>z</sub><br>kip-ft | Torque<br>kip-ft |
| Dead Only                                                | 98.125             | 0.000                   | -0.000                  | 27.928                                          | 14.239                                          | 0.000            |
| 1.2 Dead+1.0 Wind 0 deg - No<br>Ice                      | 117.750            | -0.048                  | -122.857                | -11366.298                                      | 1.344                                           | -69.525          |
| 0.9 Dead+1.0 Wind 0 deg - No<br>Ice                      | 88.312             | -0.048                  | -122.857                | -11374.677                                      | -2.928                                          | -69.525          |
| 1.2 Dead+1.0 Wind 30 deg - No<br>Ice                     | 117.750            | 56.228                  | -97.296                 | -9206.537                                       | -5361.232                                       | -30.929          |
| 0.9 Dead+1.0 Wind 30 deg - No<br>Ice                     | 88.312             | 56.228                  | -97.296                 | -9214.916                                       | -5365.504                                       | -30.929          |
| 1.2 Dead+1.0 Wind 60 deg - No<br>Ice                     | 117.750            | 92.797                  | -52.862                 | -5037.581                                       | -8928.626                                       | 0.161            |
| 0.9 Dead+1.0 Wind 60 deg - No<br>Ice                     | 88.312             | 92.797                  | -52.862                 | -5045.959                                       | -8932.898                                       | 0.161            |
| 1.2 Dead+1.0 Wind 90 deg - No<br>Ice                     | 117.750            | 108.734                 | 0.357                   | 56.593                                          | -10426.792                                      | 20.825           |
| 0.9 Dead+1.0 Wind 90 deg - No<br>Ice                     | 88.312             | 108.734                 | 0.357                   | 48.214                                          | -10431.064                                      | 20.825           |
| 1.2 Dead+1.0 Wind 120 deg -<br>No Ice                    | 117.750            | 103.366                 | 59.295                  | 5566.687                                        | -9703.021                                       | 58.108           |
| 0.9 Dead+1.0 Wind 120 deg -<br>No Ice                    | 88.312             | 103.366                 | 59.295                  | 5558.309                                        | -9707.292                                       | 58.108           |
| 1.2 Dead+1.0 Wind 150 deg -<br>No Ice                    | 117.750            | 60.269                  | 102.984                 | 9597.088                                        | -5618.070                                       | 75.271           |
| 0.9 Dead+1.0 Wind 150 deg -<br>No Ice                    | 88.312             | 60.269                  | 102.984                 | 9588.710                                        | -5622.342                                       | 75.271           |
| 1.2 Dead+1.0 Wind 180 deg -<br>No Ice                    | 117.750            | 0.447                   | 115.984                 | 10877.855                                       | -20.550                                         | 68.809           |
| 0.9 Dead+1.0 Wind 180 deg -<br>No Ice                    | 88.312             | 0.447                   | 115.984                 | 10869.477                                       | -24.822                                         | 68.809           |
| 1.2 Dead+1.0 Wind 210 deg -<br>No Ice                    | 117.750            | -56.153                 | 96.646                  | 9192.168                                        | 5377.799                                        | 29.860           |
| 0.9 Dead+1.0 Wind 210 deg -<br>No Ice                    | 88.312             | -56.153                 | 96.646                  | 9183.789                                        | 5373.527                                        | 29.860           |
| 1.2 Dead+1.0 Wind 240 deg -<br>No Ice                    | 117.750            | -98.085                 | 56.189                  | 5362.233                                        | 9355.318                                        | 1.586            |
| 0.9 Dead+1.0 Wind 240 deg -<br>No Ice                    | 88.312             | -98.085                 | 56.189                  | 5353.854                                        | 9351.046                                        | 1.586            |
| 1.2 Dead+1.0 Wind 270 deg -<br>No Ice                    | 117.750            | -108.205                | -0.363                  | 8.446                                           | 10393.527                                       | -20.211          |
| 0.9 Dead+1.0 Wind 270 deg -<br>No Ice                    | 88.312             | -108.205                | -0.363                  | 0.068                                           | 10389.255                                       | -20.211          |
| 1.2 Dead+1.0 Wind 300 deg -<br>No Ice                    | 117.750            | -97.217                 | -55.893                 | -5224.520                                       | 9226.630                                        | -57.250          |
| 0.9 Dead+1.0 Wind 300 deg -<br>No Ice                    | 88.312             | -97.217                 | -55.893                 | -5232.899                                       | 9222.358                                        | -57.250          |
| 1.2 Dead+1.0 Wind 330 deg -<br>No Ice                    | 117.750            | -59.904                 | -103.030                | -9537.875                                       | 5598.403                                        | -75.227          |
| 0.9 Dead+1.0 Wind 330 deg -<br>No Ice                    | 88.312             | -59.904                 | -103.030                | -9546.253                                       | 5594.131                                        | -75.227          |
| 1.2 Dead+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 0 deg+1.0 | 268.053<br>268.053 | 0.000<br>0.171          | -0.000<br>-24.521       | 85.620<br>-2242.939                             | 40.282<br>23.270                                | 0.000<br>-7.083  |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 30 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

14:41:12 09/21/22

| Load                         | Vertical | <i>Shear</i> <sub>x</sub> | Shear <sub>z</sub> | Overturning   | Overturning   | Torque  |
|------------------------------|----------|---------------------------|--------------------|---------------|---------------|---------|
| Combination                  |          |                           |                    | Moment, $M_x$ | Moment, $M_z$ |         |
|                              | K        | K                         | K                  | kip-ft        | kip-ft        | kip-ft  |
| Ice+1.0 Temp                 |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 30 deg+1.0 | 268.053  | 11.662                    | -19.947            | -1841.807     | -1090.507     | -2.193  |
| Ice+1.0 Temp                 |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 60 deg+1.0 | 268.053  | 19.312                    | -11.040            | -991.095      | -1849.575     | 0.562   |
| Ice+1.0 Temp                 |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 90 deg+1.0 | 268.053  | 22.680                    | -0.058             | 79.919        | -2163.256     | -0.435  |
| Ice+1.0 Temp                 |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 120        | 268.053  | 21.004                    | 11.859             | 1214.154      | -1965.282     | 1.990   |
| deg+1.0 Ice+1.0 Temp         |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 150        | 268.053  | 12.208                    | 20.911             | 2068.282      | -1122.363     | 7.097   |
| deg+1.0 Ice+1.0 Temp         |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 180        | 268.053  | 0.057                     | 23.771             | 2353.905      | 35.102        | 7.550   |
| deg+1.0 Ice+1.0 Temp         |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 210        | 268.053  | -11.507                   | 19.866             | 2002.845      | 1156.230      | 2.991   |
| deg+1.0 Ice+1.0 Temp         |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 240        | 268.053  | -19.744                   | 11.330             | 1183.730      | 1959.540      | -0.284  |
| deg+1.0 Ice+1.0 Temp         |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 270        | 268.053  | -22.540                   | -0.063             | 80.584        | 2228.905      | -0.350  |
| deg+1.0 Ice+1.0 Temp         |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 300        | 268.053  | -20.237                   | -11.646            | -1026.845     | 1981.922      | -2.457  |
| deg+1.0 Ice+1.0 Temp         |          |                           |                    |               |               |         |
| 1.2 Dead+1.0 Wind 330        | 268.053  | -12.146                   | -20.925            | -1898.761     | 1194.869      | -7.089  |
| deg+1.0 Ice+1.0 Temp         |          |                           |                    |               |               |         |
| Dead+Wind 0 deg - Service    | 98.125   | -0.008                    | -20.174            | -1849.642     | 11.687        | -11.274 |
| Dead+Wind 30 deg - Service   | 98.125   | 9.244                     | -15.995            | -1495.536     | -872.398      | -5.021  |
| Dead+Wind 60 deg - Service   | 98.125   | 15.265                    | -8.698             | -808.892      | -1461.496     | 0.015   |
| Dead+Wind 90 deg - Service   | 98.125   | 17.884                    | 0.058              | 31.670        | -1708.321     | 3.364   |
| Dead+Wind 120 deg - Service  | 98.125   | 16.979                    | 9.741              | 939.676       | -1587.068     | 9.412   |
| Dead+Wind 150 deg - Service  | 98.125   | 9.899                     | 16.917             | 1603.853      | -914.046      | 12.199  |
| Dead+Wind 180 deg - Service  | 98.125   | 0.072                     | 19.059             | 1815.425      | 8.136         | 11.158  |
| Dead+Wind 210 deg - Service  | 98.125   | -9.231                    | 15.890             | 1538.193      | 898.022       | 4.848   |
| Dead+Wind 240 deg - Service  | 98.125   | -16.123                   | 9.237              | 906.523       | 1553.624      | 0.268   |
| Dead+Wind 270 deg - Service  | 98.125   | -17.798                   | -0.059             | 23.863        | 1725.864      | -3.265  |
| Dead+Wind 300 deg - Service  | 98.125   | -15.982                   | -9.189             | -839.205      | 1532.756      | -9.273  |
| Dead+Wind 330 deg - Service  | 98.125   | -9.840                    | -16.925            | -1549.264     | 933.794       | -12.192 |

### **Solution Summary**

|       | Sui     | m of Applied Forces | 5        |          | Sum of Reaction | ıs       |         |
|-------|---------|---------------------|----------|----------|-----------------|----------|---------|
| Load  | PX      | PY                  | PZ       | PX       | PY              | PZ       | % Erroi |
| Comb. | Κ       | Κ                   | Κ        | Κ        | Κ               | Κ        |         |
| 1     | 0.000   | -98.125             | 0.000    | -0.000   | 98.125          | 0.000    | 0.000%  |
| 2     | -0.048  | -117.750            | -122.857 | 0.048    | 117.750         | 122.857  | 0.000%  |
| 3     | -0.048  | -88.312             | -122.857 | 0.048    | 88.312          | 122.857  | 0.000%  |
| 4     | 56.228  | -117.750            | -97.296  | -56.228  | 117.750         | 97.296   | 0.000%  |
| 5     | 56.228  | -88.312             | -97.296  | -56.228  | 88.312          | 97.296   | 0.000%  |
| 6     | 92.797  | -117.750            | -52.862  | -92.797  | 117.750         | 52.862   | 0.000%  |
| 7     | 92.797  | -88.312             | -52.862  | -92.797  | 88.312          | 52.862   | 0.000%  |
| 8     | 108.734 | -117.750            | 0.357    | -108.734 | 117.750         | -0.357   | 0.000%  |
| 9     | 108.734 | -88.312             | 0.357    | -108.734 | 88.312          | -0.357   | 0.000%  |
| 10    | 103.366 | -117.750            | 59.295   | -103.366 | 117.750         | -59.295  | 0.000%  |
| 11    | 103.366 | -88.312             | 59.295   | -103.366 | 88.312          | -59.295  | 0.000%  |
| 12    | 60.269  | -117.750            | 102.984  | -60.269  | 117.750         | -102.984 | 0.000%  |
| 13    | 60.269  | -88.312             | 102.984  | -60.269  | 88.312          | -102.984 | 0.000%  |
| 14    | 0.447   | -117.750            | 115.984  | -0.447   | 117.750         | -115.984 | 0.000%  |
| 15    | 0.447   | -88.312             | 115.984  | -0.447   | 88.312          | -115.984 | 0.000%  |
| 16    | -56.153 | -117.750            | 96.646   | 56.153   | 117.750         | -96.646  | 0.000%  |
| 17    | -56.153 | -88.312             | 96.646   | 56.153   | 88.312          | -96.646  | 0.000%  |

#### 100736.010.01.0001 - TRURO, MA (BU# 841273)

Page 31 of 39

Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

#### Designed by Nithish Acharya

14:41:12 09/21/22

|       | Sur      | n of Applied Force. | \$       |         | Sum of Reactions |         |        |  |  |
|-------|----------|---------------------|----------|---------|------------------|---------|--------|--|--|
| Load  | PX       | PY                  | PZ       | PX      | PY               | PZ      | % Erro |  |  |
| Comb. | K        | K                   | K        | K       | K                | K       |        |  |  |
| 18    | -98.085  | -117.750            | 56.189   | 98.085  | 117.750          | -56.189 | 0.000% |  |  |
| 19    | -98.085  | -88.312             | 56.189   | 98.085  | 88.312           | -56.189 | 0.000% |  |  |
| 20    | -108.205 | -117.750            | -0.363   | 108.205 | 117.750          | 0.363   | 0.000% |  |  |
| 21    | -108.205 | -88.312             | -0.363   | 108.205 | 88.312           | 0.363   | 0.000% |  |  |
| 22    | -97.217  | -117.750            | -55.893  | 97.217  | 117.750          | 55.893  | 0.000% |  |  |
| 23    | -97.217  | -88.312             | -55.893  | 97.217  | 88.312           | 55.893  | 0.000% |  |  |
| 24    | -59.904  | -117.750            | -103.030 | 59.904  | 117.750          | 103.030 | 0.000% |  |  |
| 25    | -59.904  | -88.312             | -103.030 | 59.904  | 88.312           | 103.030 | 0.000% |  |  |
| 26    | 0.000    | -268.053            | 0.000    | -0.000  | 268.053          | 0.000   | 0.000% |  |  |
| 27    | 0.171    | -268.053            | -24.521  | -0.171  | 268.053          | 24.521  | 0.000% |  |  |
| 28    | 11.662   | -268.053            | -19.947  | -11.662 | 268.053          | 19.947  | 0.000% |  |  |
| 29    | 19.312   | -268.053            | -11.040  | -19.312 | 268.053          | 11.040  | 0.000% |  |  |
| 30    | 22.680   | -268.053            | -0.058   | -22.680 | 268.053          | 0.058   | 0.000% |  |  |
| 31    | 21.004   | -268.053            | 11.859   | -21.004 | 268.053          | -11.859 | 0.000% |  |  |
| 32    | 12.208   | -268.053            | 20.911   | -12.208 | 268.053          | -20.911 | 0.000% |  |  |
| 33    | 0.057    | -268.053            | 23.771   | -0.057  | 268.053          | -23.771 | 0.000% |  |  |
| 34    | -11.507  | -268.053            | 19.866   | 11.507  | 268.053          | -19.866 | 0.000% |  |  |
| 35    | -19.744  | -268.053            | 11.330   | 19.744  | 268.053          | -11.330 | 0.000% |  |  |
| 36    | -22.540  | -268.053            | -0.063   | 22.540  | 268.053          | 0.063   | 0.000% |  |  |
| 37    | -20.237  | -268.053            | -11.646  | 20.237  | 268.053          | 11.646  | 0.000% |  |  |
| 38    | -12.146  | -268.053            | -20.925  | 12.146  | 268.053          | 20.925  | 0.000% |  |  |
| 39    | -0.008   | -98.125             | -20.174  | 0.008   | 98.125           | 20.174  | 0.000% |  |  |
| 40    | 9.244    | -98.125             | -15.995  | -9.244  | 98.125           | 15.995  | 0.000% |  |  |
| 41    | 15.265   | -98.125             | -8.698   | -15.265 | 98.125           | 8.698   | 0.000% |  |  |
| 42    | 17.884   | -98.125             | 0.058    | -17.884 | 98.125           | -0.058  | 0.000% |  |  |
| 43    | 16.979   | -98.125             | 9.741    | -16.979 | 98.125           | -9.741  | 0.000% |  |  |
| 44    | 9.899    | -98.125             | 16.917   | -9.899  | 98.125           | -16.917 | 0.000% |  |  |
| 45    | 0.072    | -98.125             | 19.059   | -0.072  | 98.125           | -19.059 | 0.000% |  |  |
| 46    | -9.231   | -98.125             | 15.890   | 9.231   | 98.125           | -15.890 | 0.000% |  |  |
| 47    | -16.123  | -98.125             | 9.237    | 16.123  | 98.125           | -9.237  | 0.000% |  |  |
| 48    | -17.798  | -98.125             | -0.059   | 17.798  | 98.125           | 0.059   | 0.000% |  |  |
| 49    | -15.982  | -98.125             | -9.189   | 15.982  | 98.125           | 9.189   | 0.000% |  |  |
| 50    | -9.840   | -98.125             | -16.925  | 9.840   | 98.125           | 16.925  | 0.000% |  |  |

### **Maximum Tower Deflections - Service Wind**

| Section | Elevation | Horz.      | Gov.  | Tilt  | Twist |
|---------|-----------|------------|-------|-------|-------|
| No.     |           | Deflection | Load  |       |       |
|         | ft        | in         | Comb. | 0     | 0     |
| T1      | 170 - 160 | 1.262      | 43    | 0.060 | 0.014 |
| T2      | 160 - 140 | 1.137      | 43    | 0.059 | 0.013 |
| T3      | 140 - 120 | 0.894      | 43    | 0.054 | 0.010 |
| T4      | 120 - 100 | 0.669      | 43    | 0.047 | 0.007 |
| T5      | 100 - 80  | 0.474      | 39    | 0.039 | 0.005 |
| T6      | 80 - 60   | 0.314      | 39    | 0.031 | 0.004 |
| T7      | 60 - 40   | 0.190      | 39    | 0.023 | 0.003 |
| T8      | 40 - 20   | 0.098      | 39    | 0.015 | 0.002 |
| Т9      | 20 - 0    | 0.036      | 39    | 0.008 | 0.001 |

### **Critical Deflections and Radius of Curvature - Service Wind**

Project

Client

#### Job 100736.010.01.0001 - TRURO, MA (BU# 841273)

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

#### Designed by Nithish Acharya

| Elevation | Appurtenance                  | Gov.  | Deflection | Tilt  | Twist | Radius of |
|-----------|-------------------------------|-------|------------|-------|-------|-----------|
|           |                               | Load  |            |       |       | Curvature |
| ft        |                               | Comb. | in         | 0     | 0     | ft        |
| 170'      | Lightning Rod 5/8" x 5'       | 43    | 1.262      | 0.060 | 0.014 | 972466    |
| 168'      | AIR 6419 B41_TMO              | 43    | 1.237      | 0.060 | 0.014 | 972466    |
| 160'      | 6813-2 HW                     | 43    | 1.137      | 0.059 | 0.013 | 503337    |
| 151'      | (2) P65.15.XL.0 w/ Mount Pipe | 43    | 1.026      | 0.057 | 0.012 | 317238    |
| 145'      | 800 10122 w/ Mount Pipe       | 43    | 0.953      | 0.055 | 0.011 | 257561    |
| 139'      | Pipe Mount [PM 601-1]         | 43    | 0.882      | 0.054 | 0.010 | 219284    |
| 138'      | Andrew PAR6-59A               | 43    | 0.870      | 0.053 | 0.010 | 214674    |
| 130'      | LNX-6514DS-A1M w/ Mount Pipe  | 43    | 0.778      | 0.050 | 0.008 | 183411    |
| 122'      | MX08FRO665-21 w/ Mount Pipe   | 43    | 0.690      | 0.047 | 0.007 | 160396    |
| 106'      | COMMSCOPE                     | 43    | 0.529      | 0.041 | 0.006 | 138060    |
|           | VHLPX4-11W-6WH                |       |            |       |       |           |
| 104'      | ANT150F2                      | 43    | 0.510      | 0.041 | 0.006 | 135911    |
| 96'       | ERICSSON AIR 21 B4A B2P       | 39    | 0.439      | 0.038 | 0.005 | 131023    |
| 87'       | PR-950                        | 39    | 0.366      | 0.034 | 0.004 | 129309    |
| 71'       | GPS-TMG-HR-26N                | 39    | 0.254      | 0.027 | 0.004 | 136689    |

### **Maximum Tower Deflections - Design Wind**

| Section | Elevation | Horz.      | Gov.  | Tilt  | Twist |
|---------|-----------|------------|-------|-------|-------|
| No.     |           | Deflection | Load  |       |       |
|         | ft        | in         | Comb. | 0     | 0     |
| T1      | 170 - 160 | 7.690      | 3     | 0.356 | 0.084 |
| T2      | 160 - 140 | 6.933      | 3     | 0.351 | 0.083 |
| T3      | 140 - 120 | 5.462      | 3     | 0.325 | 0.062 |
| T4      | 120 - 100 | 4.101      | 3     | 0.283 | 0.044 |
| T5      | 100 - 80  | 2.910      | 3     | 0.239 | 0.032 |
| T6      | 80 - 60   | 1.928      | 3     | 0.190 | 0.025 |
| T7      | 60 - 40   | 1.166      | 3     | 0.138 | 0.019 |
| T8      | 40 - 20   | 0.600      | 3     | 0.092 | 0.013 |
| Т9      | 20 - 0    | 0.217      | 2     | 0.046 | 0.008 |

### **Critical Deflections and Radius of Curvature - Design Wind**

| Elevation | Appurtenance                  | Gov.<br>Load | Deflection | Tilt  | Twist | Radius of<br>Curvature |
|-----------|-------------------------------|--------------|------------|-------|-------|------------------------|
| ft        |                               | Comb.        | in         | 0     | 0     | ft                     |
| 170'      | Lightning Rod 5/8" x 5'       | 3            | 7.690      | 0.356 | 0.084 | 172147                 |
| 168'      | AIR 6419 B41 TMO              | 3            | 7.538      | 0.355 | 0.084 | 172147                 |
| 160'      | 6813-2 HW                     | 3            | 6.933      | 0.351 | 0.083 | 89745                  |
| 151'      | (2) P65.15.XL.0 w/ Mount Pipe | 3            | 6.261      | 0.342 | 0.075 | 58010                  |
| 145'      | 800 10122 w/ Mount Pipe       | 3            | 5.822      | 0.333 | 0.068 | 46587                  |
| 139'      | Pipe Mount [PM 601-1]         | 3            | 5.391      | 0.323 | 0.061 | 39022                  |
| 138'      | Andrew PAR6-59A               | 3            | 5.320      | 0.321 | 0.060 | 38027                  |
| 130'      | LNX-6514DS-A1M w/ Mount Pipe  | 3            | 4.764      | 0.305 | 0.052 | 31670                  |
| 122'      | MX08FRO665-21 w/ Mount Pipe   | 3            | 4.231      | 0.288 | 0.046 | 27181                  |
| 106'      | COMMSCOPE                     | 3            | 3.246      | 0.253 | 0.035 | 23235                  |
|           | VHLPX4-11W-6WH                |              |            |       |       |                        |
| 104'      | ANT150F2                      | 3            | 3.132      | 0.248 | 0.034 | 22865                  |
| 96'       | ERICSSON AIR 21 B4A B2P       | 3            | 2.696      | 0.229 | 0.031 | 21893                  |
| 87'       | PR-950                        | 3            | 2.246      | 0.207 | 0.027 | 21466                  |
| 71'       | GPS-TMG-HR-26N                | 3            | 1.559      | 0.166 | 0.022 | 22622                  |



Date

Project

Client

Job

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

14:41:12 09/21/22 Designed by Nithish Acharya

**Bolt Design Data** Section Elevation Bolt Bolt Size Number Allowable Ratio Allowable Component Maximum Criteria Type Grade Of Load Load Load Ratio No. per Bolt per Bolt ft in Bolts Allowable K Κ T1 170 Leg A325N 1.000 4 1.05 54.517 0.020 🖌 Bolt Tension 1.075 0.625 1 1.05 Bolt Shear Diagonal A325N 1 3.354 13.806 0.243 Top Girt A325N 0.625 1 0.248 9.914 1.05 Member Block 0.025 🖌 Shear T2 160 Leg A325N 1.250 4 7.754 87.220 V 1.05 Bolt Tension 0.089 Diagonal A325N 0.750 1 8.793 18.922 1.05 Gusset Bearing 0.465 🖌 Т3 140 A325N 1.250 6 12.649 87.220 1.05 Bolt Tension Leg 0.145 🖌 A325N 1.000 12.756 20.227 1.05 Diagonal 1 1 Member Bearing 0.631 T4 120 A325N 6 21.808 103.939 1.05 Leg 1.375 V Bolt Tension 0.210 Diagonal A325N 1.000 1 15.516 26.970 1.05 Member Bearing ~ 0.575 T5 100 103.939 Leg A325N 1.375 6 32.126 1 1.05 Bolt Tension 0.309 Diagonal A325N 1.125 1 20.943 26.100 1.05 Member Bearing 0.802 🖌 43.557 T6 80 Leg A325N 1.500 6 126.472 1.05 Bolt Tension ~ 0.344 A325N 22.278 1.05 Diagonal 1.125 1 32.625 V Member Bearing 0.683 T7 60 Leg A325N 1.500 8 41.044 126.472 1.05 Bolt Tension 0.325 🖌 Diagonal A325N 1.250 1 23.547 31.538 1.05 Member Bearing 0.747 🖌 T8 40 A325N 1.500 8 49.202 126.472 1.05 Bolt Tension Leg 0.389 🖌 Diagonal A325N 1.250 1 25.317 31.538 1.05 Member Bearing ~ 0.803 Т9 20 2 Diagonal A325N 1.00017.426 35.343 1 1.05 Bolt Shear 0.493 Horizontal A325N 1.000 2 12.001 26.916 1.05 Member Block ~ 0.446 Shear Redund Horz 1 A325N 1.0001 9.076 14.953 1.05 Member Block ~ 0.607 Shear Bracing Redund Diag 1 A325N 1.000 1 5.867 11.963 1.05 Member Block 0.490 v Bracing Shear

### **Compression Checks**

|                |           | Leg                 | Desig    | n Dat    | a (Cor         | npres  | sion)          |            |                         |
|----------------|-----------|---------------------|----------|----------|----------------|--------|----------------|------------|-------------------------|
| Section<br>No. | Elevation | Size                | L        | $L_u$    | Kl/r           | Α      | P <sub>u</sub> | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|                | ft        |                     | ft       | ft       |                | $in^2$ | Κ              | Κ          | $\phi P_n$              |
| T1             | 170 - 160 | Sabre 3.5" x 0.216" | 10'7/32" | 5'3/32"  | 51.7<br>K=1.00 | 2.228  | -7.736         | 82.510     | 0.094 1                 |
| T2             | 160 - 140 | Sabre 4.5" x 0.438" | 20'13/32 | 6'8-1/8" | 55.5<br>K=1.00 | 5.589  | -40.935        | 200.839    | 0.204 1                 |

| <i>tnxTower</i> |
|-----------------|
|-----------------|

Job

Project

Client

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

| Section<br>No. | Elevation | Size                   | L        | $L_u$    | Kl/r           | Α      | $P_u$    | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|------------------------|----------|----------|----------------|--------|----------|------------|-------------------------|
|                | ft        |                        | ft       | ft       |                | $in^2$ | K        | Κ          | $\phi P_n$              |
| T3             | 140 - 120 | Sabre 6.625" x 0.432"  | 20'13/32 | 6'8-1/8" | 36.5<br>K=1.00 | 8.405  | -95.003  | 343.100    | 0.277 1                 |
| T4             | 120 - 100 | Sabre 8.625" x 0.5"    | 20'13/32 | 6'8-1/8" | 27.8<br>K=1.00 | 12.763 | -160.765 | 542.674    | 0.296 1                 |
| T5             | 100 - 80  | Sabre 10.750" x 0.500" | 20'13/32 | 10'7/32" | 33.1<br>K=1.00 | 16.101 | -231.538 | 668.659    | 0.346 1                 |
| T6             | 80 - 60   | Sabre 12.75" x 0.5"    | 20'13/32 | 10'7/32" | 27.7<br>K=1.00 | 19.242 | -310.146 | 818.560    | 0.379 1                 |
| T7             | 60 - 40   | Sabre 16" x 0.5"       | 20'13/32 | 10'7/32" | 21.9<br>K=1.00 | 24.347 | -389.310 | 1057.800   | 0.368 1                 |
| T8             | 40 - 20   | Sabre 18" x 0.5"       | 20'13/32 | 10'7/32" | 19.4<br>K=1.00 | 27.489 | -467.770 | 1203.360   | 0.389 1                 |
| Т9             | 20 - 0    | Sabre 18" x 0.5"       | 20'13/32 | 5'3/32"  | 9.7<br>K=1.00  | 27.489 | -523.334 | 1228.500   | 0.426 1                 |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

| Section<br>No. | Elevation | Size             | L               | $L_u$           | Kl/r            | Α      | $P_u$   | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|------------------|-----------------|-----------------|-----------------|--------|---------|------------|-------------------------|
|                | ft        |                  | ft              | ft              |                 | $in^2$ | K       | K          | $\phi P_n$              |
| T1             | 170 - 160 | L2x2x3/8         | 10'15/16        | 4'10-7/1<br>6"  | 150.2<br>K=1.00 | 1.360  | -3.354  | 17.250     | 0.194                   |
| T2             | 160 - 140 | L3x3x3/8         | 12'6-31/<br>32" | 6'1-7/16'<br>'  | 125.1<br>K=1.00 | 2.110  | -8.889  | 38.577     | 0.230                   |
| T3             | 140 - 120 | L3 1/2x3 1/2x3/8 | 14'3-25/<br>32" | 6'10-13/<br>32" | 120.0<br>K=1.00 | 2.480  | -12.897 | 48.877     | 0.264                   |
| T4             | 120 - 100 | L3 1/2x3 1/2x1/2 | 16'1-11/<br>32" | 7'8-1/8"        | 134.9<br>K=1.00 | 3.250  | -15.693 | 51.122     | 0.307                   |
| T5             | 100 - 80  | L5x5x1/2         | 19'3-9/1<br>6"  | 9'2-13/1<br>6"  | 114.5<br>K=1.02 | 4.750  | -21.079 | 100.449    | 0.210                   |
| T6             | 80 - 60   | L5x5x5/8         | 21'3/8"         | 10'5/32"        | 122.9<br>K=1.00 | 5.860  | -22.481 | 110.813    | 0.203                   |
| Τ7             | 60 - 40   | L5x5x5/8         | 22'9-23/<br>32" | 10'8-15/<br>16" | 131.8<br>K=1.00 | 5.860  | -24.079 | 96.513     | 0.249                   |
| Т8             | 40 - 20   | L5x5x5/8         | 24'7-1/2'       | 11'6-13/<br>16" | 141.9<br>K=1.00 | 5.860  | -26.567 | 83.268     | 0.319                   |
| Т9             | 20 - 0    | L5x5x5/8         | 16'1/8"         | 15'19/32<br>"   | 118.8<br>K=1.00 | 5.860  | -34.851 | 117.313    | 0.297                   |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

### Horizontal Design Data (Compression)

| tnxTower                                                        | Job<br>100736.010.01.0001 - TRURO, MA (BU# 841273) | Page 35 of 39                  |
|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------|
| <b>B+T Group</b><br>1717 S, Boulder, Suite 300                  | Project                                            | Date<br>14:41:12 09/21/22      |
| Tulsa, OK 74119<br>Phone: (918) 587-4630<br>FAX: (918) 587-4630 | Client<br>Crown Castle                             | Designed by<br>Nithish Acharya |

| Section<br>No. | Elevation | Size                     | L   | $L_u$ | Kl/r            | Α      | $P_u$   | $\phi P_n$ | Ratio                |
|----------------|-----------|--------------------------|-----|-------|-----------------|--------|---------|------------|----------------------|
| 100.           | ft        |                          | ft  | ft    |                 | $in^2$ | Κ       | Κ          | $\frac{1}{\phi P_n}$ |
| Т9             | 20 - 0    | 2L3 1/2x3 1/2x1/4x3/8    | 24' | 11'3" | 155.5<br>K=1.00 | 3.380  | -25.174 | 38.299     | 0.657 1              |
|                |           | 2L 'a' > 64.466 in - 159 |     |       |                 |        |         |            | •                    |

<sup>1</sup>  $P_u / \phi P_n$  controls

|                |           | Top Gi            | irt Des | sign E | Data (C         | Compr  | ession) |            |                         |
|----------------|-----------|-------------------|---------|--------|-----------------|--------|---------|------------|-------------------------|
| Section<br>No. | Elevation | Size              | L       | $L_u$  | Kl/r            | Α      | $P_u$   | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|                | ft        |                   | ft      | ft     |                 | $in^2$ | K       | Κ          | $\phi P_n$              |
| T1             | 170 - 160 | L2 1/2x2 1/2x3/16 | 8'      | 7'5"   | 179.8<br>K=1.00 | 0.902  | -0.291  | 7.986      | 0.036 1                 |

<sup>1</sup>  $P_u / \phi P_n$  controls

|                | R         | edundant Ho | orizonta | al (1) | Desig           | n Data | ı (Comp        | oressio    | n)                      |
|----------------|-----------|-------------|----------|--------|-----------------|--------|----------------|------------|-------------------------|
| Section<br>No. | Elevation | Size        | L        | $L_u$  | Kl/r            | Α      | P <sub>u</sub> | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|                | ft        |             | ft       | ft     |                 | $in^2$ | K              | Κ          | $\phi P_n$              |
| Т9             | 20 - 0    | L3x3x5/16   | 6'       | 5'3"   | 107.0<br>K=1.00 | 1.780  | -9.076         | 41.028     | 0.221 1                 |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

|                |           | Redundant D | iagona    | l (1) D        | esign           | Data   | (Comp          | ression    | )                       |
|----------------|-----------|-------------|-----------|----------------|-----------------|--------|----------------|------------|-------------------------|
| Section<br>No. | Elevation | Size        | L         | $L_u$          | Kl/r            | Α      | P <sub>u</sub> | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|                | ft        |             | ft        | ft             |                 | $in^2$ | Κ              | K          | $\phi P_n$              |
| Т9             | 20 - 0    | L3x3x1/4    | 7'7-7/16' | 6'7-17/3<br>2" | 134.3<br>K=1.00 | 1.440  | -5.764         | 22.837     | 0.252 1                 |

<sup>1</sup>  $P_u / \phi P_n$  controls

|         |           | Inner B | racing | Desig | n Dat | a (Cor | npress         | ion)       |                        |
|---------|-----------|---------|--------|-------|-------|--------|----------------|------------|------------------------|
| Section | Elevation | Size    | L      | $L_u$ | Kl/r  | A      | P <sub>u</sub> | $\phi P_n$ | Ratio                  |
| No.     | ft        |         | ft     | ft    |       | $in^2$ | Κ              | K          | $\frac{P_u}{\phi P_n}$ |

| tnxTower                                                        | Јов<br>100736.010.01.0001 - TRURO, MA (BU# 841273) | Page<br>36 of 39               |
|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------|
| <b>B+T Group</b><br>1717 S, Boulder, Suite 300                  | Project                                            | Date<br>14:41:12 09/21/22      |
| Tulsa, OK 74119<br>Phone: (918) 587-4630<br>FAX: (918) 587-4630 | Client<br>Crown Castle                             | Designed by<br>Nithish Acharya |

| Section<br>No. | Elevation | Size      | L   | $L_u$ | Kl/r            | Α      | $P_u$  | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|-----------|-----|-------|-----------------|--------|--------|------------|-------------------------|
|                | ft        |           | ft  | ft    |                 | $in^2$ | K      | Κ          | $\phi P_n$              |
| T9             | 20 - 0    | L3x3x3/16 | 12' | 12'   | 241.6<br>K=1.00 | 1.090  | -0.034 | 5.344      | 0.006 1                 |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

# **Tension Checks**

# Leg Design Data (Tension)

| Section<br>No. | Elevation | Size                   | L        | $L_u$    | Kl/r | Α      | $P_u$   | $\phi P_n$ | Ratio<br>Pu        |
|----------------|-----------|------------------------|----------|----------|------|--------|---------|------------|--------------------|
|                | ft        |                        | ft       | ft       |      | $in^2$ | K       | Κ          | $\phi P_n$         |
| T1             | 170 - 160 | Sabre 3.5" x 0.216"    | 10'7/32" | 5'3/32"  | 51.7 | 2.228  | 4.300   | 100.281    | 0.043 1            |
| T2             | 160 - 140 | Sabre 4.5" x 0.438"    | 20'13/32 | 6'8-1/8" | 55.5 | 5.589  | 31.017  | 251.522    | 0.123 1            |
| T3             | 140 - 120 | Sabre 6.625" x 0.432"  | 20'13/32 | 6'8-1/8" | 36.5 | 8.405  | 75.895  | 378.222    | 0.201 1            |
| T4             | 120 - 100 | Sabre 8.625" x 0.5"    | 20'13/32 | 6'8-1/8" | 27.8 | 12.763 | 130.846 | 574.322    | 0.228 1            |
| T5             | 100 - 80  | Sabre 10.750" x 0.500" | 20'13/32 | 10'7/32" | 33.1 | 16.101 | 192.757 | 724.530    | 0.266 <sup>1</sup> |
| T6             | 80 - 60   | Sabre 12.75" x 0.5"    | 20'13/32 | 10'7/32" | 27.7 | 19.242 | 261.343 | 865.902    | 0.302 1            |
| Τ7             | 60 - 40   | Sabre 16" x 0.5"       | 20'13/32 | 10'7/32" | 21.9 | 24.347 | 328.352 | 1095.630   | 0.300 1            |
| T8             | 40 - 20   | Sabre 18" x 0.5"       | 20'13/32 | 10'7/32" | 19.4 | 27.489 | 393.616 | 1237.000   | 0.318 1            |
| Т9             | 20 - 0    | Sabre 18" x 0.5"       | 20'13/32 | 5'3/32"  | 9.7  | 27.489 | 438.312 | 1237.000   | 0.354 <sup>1</sup> |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

# Diagonal Design Data (Tension)

| Section<br>No. | Elevation | Size             | L               | $L_u$           | Kl/r  | A      | $P_u$  | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|------------------|-----------------|-----------------|-------|--------|--------|------------|-------------------------|
|                | ft        |                  | ft              | ft              |       | $in^2$ | Κ      | Κ          | $\phi P_n$              |
| T1             | 170 - 160 | L2x2x3/8         | 10'15/16        | 4'10-7/1<br>6'' | 101.3 | 0.809  | 3.333  | 35.194     | 0.095 1                 |
| T2             | 160 - 140 | L3x3x3/8         | 12'6-31/<br>32" | 6'1-7/16'<br>'  | 82.4  | 1.336  | 8.793  | 58.134     | 0.151 1                 |
| Т3             | 140 - 120 | L3 1/2x3 1/2x3/8 | 14'3-25/<br>32" | 6'10-13/<br>32" | 78.9  | 1.544  | 12.756 | 67.146     | 0.190 1                 |
| T4             | 120 - 100 | L3 1/2x3 1/2x1/2 | 16'1-11/        | 7'8-1/8"        | 88.8  | 2.016  | 15.516 | 87.680     | $0.177^{-1}$            |

| tnxTower                                                        | Job<br>100736.010.01.0001 - TRURO, MA (BU# 841273) | Page 37 of 39                  |
|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------|
| <b>B+T Group</b><br>1717 S, Boulder, Suite 300                  | Project                                            | Date<br>14:41:12 09/21/22      |
| Tulsa, OK 74119<br>Phone: (918) 587-4630<br>FAX: (918) 587-4630 | Client<br>Crown Castle                             | Designed by<br>Nithish Acharya |

| Section<br>No. | Elevation | Size     | L               | $L_u$           | Kl/r  | Α      | $P_u$  | $\phi P_n$ | Ratio<br>$P_u$     |
|----------------|-----------|----------|-----------------|-----------------|-------|--------|--------|------------|--------------------|
|                | ft        |          | ft              | ft              |       | $in^2$ | Κ      | K          | $\phi P_n$         |
|                |           |          | 32"             |                 |       |        |        |            | ~                  |
| T5             | 100 - 80  | L5x5x1/2 | 19'3-9/1<br>6'' | 9'2-13/1<br>6'' | 73.4  | 3.094  | 20.943 | 134.578    | 0.156 1            |
| T6             | 80 - 60   | L5x5x5/8 | 21'3/8"         | 10'5/32"        | 80.5  | 3.809  | 22.278 | 165.694    | 0.134 1            |
| T7             | 60 - 40   | L5x5x5/8 | 22'9-23/<br>32" | 10'8-15/<br>16" | 86.4  | 3.750  | 23.547 | 163.145    | 0.144 1            |
| Т8             | 40 - 20   | L5x5x5/8 | 24'7-1/2'       | 11'6-13/<br>16" | 92.9  | 3.750  | 25.317 | 163.145    | 0.155 1            |
| Т9             | 20 - 0    | L5x5x5/8 | 16'1/8"         | 15'19/32        | 118.8 | 3.868  | 31.906 | 168.243    | 0.190 <sup>1</sup> |

<sup>1</sup>  $P_u / \phi P_n$  controls

# Horizontal Design Data (Tension)

| Section<br>No. | Elevation | Size                     | L   | $L_u$  | Kl/r  | Α      | $P_u$  | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|--------------------------|-----|--------|-------|--------|--------|------------|-------------------------|
|                | ft        |                          | ft  | ft     |       | $in^2$ | K      | Κ          | $\phi P_n$              |
| Т9             | 20 - 0    | 2L3 1/2x3 1/2x1/4x3/8    | 23' | 10'9'' | 118.3 | 2.113  | 24.002 | 91.921     | 0.261 1                 |
|                |           | 2L 'a' > 61.600 in - 183 |     |        |       |        |        |            |                         |

<sup>1</sup>  $P_u / \phi P_n$  controls

|                | Top Girt Design Data (Tension) |                   |    |       |       |        |       |            |                         |
|----------------|--------------------------------|-------------------|----|-------|-------|--------|-------|------------|-------------------------|
| Section<br>No. | Elevation                      | Size              | L  | $L_u$ | Kl/r  | Α      | $P_u$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|                | ft                             |                   | ft | ft    |       | $in^2$ | Κ     | K          | $\phi P_n$              |
| T1             | 170 - 160                      | L2 1/2x2 1/2x3/16 | 8' | 7'5"  | 118.9 | 0.571  | 0.248 | 24.840     | 0.010 1                 |

<sup>1</sup>  $P_u / \phi P_n$  controls

| Redundant Horizontal (1) Design Data (Tension) |           |           |    |       |      |        |                |            |                         |
|------------------------------------------------|-----------|-----------|----|-------|------|--------|----------------|------------|-------------------------|
| Section<br>No.                                 | Elevation | Size      | L  | $L_u$ | Kl/r | A      | P <sub>u</sub> | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|                                                | ft        |           | ft | ft    |      | $in^2$ | Κ              | Κ          | $\phi P_n$              |
| T9                                             | 20 - 0    | L3x3x5/16 | 6' | 5'3"  | 68.3 | 1.071  | 9.076          | 46.603     | 0.195 1                 |

Nithish Acharya

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

#### <sup>1</sup> $P_u / \phi P_n$ controls

# Redundant Diagonal (1) Design Data (Tension)

| Section | Elevation | Size     | L         | $L_u$     | Kl/r | Α      | $P_u$ | $\phi P_n$ | Ratio      |
|---------|-----------|----------|-----------|-----------|------|--------|-------|------------|------------|
| No.     |           |          |           |           |      |        |       | 1 "        | $P_u$      |
|         | ft        |          | ft        | ft        |      | $in^2$ | K     | K          | $\phi P_n$ |
| Т9      | 20 - 0    | L3x3x1/4 | 7'5-7/32' | 6'5-9/32' | 83.1 | 0.869  | 5.867 | 37.804     | 0.155 1    |
|         |           |          | '         | '         |      |        |       |            | ~          |

#### <sup>1</sup> $P_u / \phi P_n$ controls

#### Inner Bracing Design Data (Tension) Section Elevation Size L $L_u$ Kl/r Α $P_u$ $\phi P_n$ Ratio No. $P_u$ in<sup>2</sup> ft ft K ft K $\phi P_n$ 12' 12' T9 20 - 0 L3x3x3/16 1.090 0.014 35.316 153.4 $0.000^{-1}$ ~

#### <sup>1</sup> $P_u / \phi P_n$ controls

### **Section Capacity Table**

| Section | Elevation | Component                           | Size                   | Critical | Р        | $\phi P_{allow}$ | %        | Pass |
|---------|-----------|-------------------------------------|------------------------|----------|----------|------------------|----------|------|
| No.     | ft        | Type                                |                        | Element  | K        | Κ                | Capacity | Fail |
| T1      | 170 - 160 | Leg                                 | Sabre 3.5" x 0.216"    | 1        | -7.736   | 86.635           | 8.9      | Pass |
| T2      | 160 - 140 | Leg                                 | Sabre 4.5" x 0.438"    | 19       | -40.935  | 210.881          | 19.4     | Pass |
| T3      | 140 - 120 | Leg                                 | Sabre 6.625" x 0.432"  | 40       | -95.003  | 360.255          | 26.4     | Pass |
| T4      | 120 - 100 | Leg                                 | Sabre 8.625" x 0.5"    | 62       | -160.765 | 569.808          | 28.2     | Pass |
| T5      | 100 - 80  | Leg                                 | Sabre 10.750" x 0.500" | 83       | -231.538 | 702.092          | 33.0     | Pass |
| T6      | 80 - 60   | Leg                                 | Sabre 12.75" x 0.5"    | 99       | -310.146 | 859.488          | 36.1     | Pass |
| T7      | 60 - 40   | Leg                                 | Sabre 16" x 0.5"       | 114      | -389.310 | 1110.690         | 35.1     | Pass |
| T8      | 40 - 20   | Leg                                 | Sabre 18" x 0.5"       | 129      | -467.770 | 1263.528         | 37.0     | Pass |
| T9      | 20 - 0    | Leg                                 | Sabre 18" x 0.5"       | 144      | -523.334 | 1289.925         | 40.6     | Pass |
| T1      | 170 - 160 | Diagonal                            | L2x2x3/8               | 12       | -3.354   | 18.112           | 18.5     | Pass |
| T2      | 160 - 140 | Diagonal                            | L3x3x3/8               | 22       | -8.889   | 40.506           | 21.9     | Pass |
| T3      | 140 - 120 | Diagonal                            | L3 1/2x3 1/2x3/8       | 44       | -12.897  | 51.321           | 25.1     | Pass |
| T4      | 120 - 100 | Diagonal                            | L3 1/2x3 1/2x1/2       | 68       | -15.693  | 53.678           | 29.2     | Pass |
| T5      | 100 - 80  | Diagonal                            | L5x5x1/2               | 89       | -21.079  | 105.471          | 20.0     | Pass |
| T6      | 80 - 60   | Diagonal                            | L5x5x5/8               | 104      | -22.481  | 116.354          | 19.3     | Pass |
| T7      | 60 - 40   | Diagonal                            | L5x5x5/8               | 119      | -24.079  | 101.338          | 23.8     | Pass |
| T8      | 40 - 20   | Diagonal                            | L5x5x5/8               | 134      | -26.567  | 87.432           | 30.4     | Pass |
| T9      | 20 - 0    | Diagonal                            | L5x5x5/8               | 160      | -34.851  | 123.179          | 28.3     | Pass |
| T9      | 20 - 0    | Horizontal                          | 2L3 1/2x3 1/2x1/4x3/8  | 159      | -25.174  | 40.214           | 62.6     | Pass |
| T1      | 170 - 160 | Top Girt                            | L2 1/2x2 1/2x3/16      | 4        | -0.291   | 8.385            | 3.5      | Pass |
| Т9      | 20 - 0    | Redund Horz 1                       | L3x3x5/16              | 157      | -9.076   | 43.079           | 21.1     | Pass |
| Т9      | 20 - 0    | Bracing<br>Redund Diag 1<br>Bracing | L3x3x1/4               | 158      | -5.764   | 23.979           | 24.0     | Pass |

| <i>tnxTower</i> |  |
|-----------------|--|
|-----------------|--|

Date

Project

Client

**B+T Group** 1717 S, Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 587-4630

Crown Castle

Designed by Nithish Acharya

14:41:12 09/21/22

| Section          | Elevation<br>ft | Component<br>Type | Size      | Critical<br>Element | P<br>K           | $\phi P_{allow} \ K$ | %<br>Capacity   | Pass<br>Fail |
|------------------|-----------------|-------------------|-----------|---------------------|------------------|----------------------|-----------------|--------------|
| <u>No.</u><br>T9 | 20 - 0          |                   | L3x3x3/16 | 166                 | -0.033           | 5.612                | 0.8             | Pass         |
| 19               | 20 - 0          | Inner Bracing     | L3X3X3/10 | 100                 | -0.055           | 5.012                |                 | Pass         |
|                  |                 |                   |           |                     |                  | Leg (T9)             | Summary<br>40.6 | Pass         |
|                  |                 |                   |           |                     |                  | Diagonal             | 30.4            | Pass         |
|                  |                 |                   |           |                     |                  | (T8)                 | 30.4            | Pass         |
|                  |                 |                   |           |                     | Horizontal       | 62.6                 | Pass            |              |
|                  |                 |                   |           |                     | (T9)<br>Top Girt | 3.5                  | Pass            |              |
|                  |                 |                   |           |                     |                  | (T1)                 |                 |              |
|                  |                 |                   |           |                     |                  | Redund               | 21.1            | Pass         |
|                  |                 |                   |           |                     |                  | Horz 1               |                 |              |
|                  |                 |                   |           |                     |                  | Bracing (T9)         |                 |              |
|                  |                 |                   |           |                     |                  | Redund               | 24.0            | Pass         |
|                  |                 |                   |           |                     |                  | Diag 1               |                 |              |
|                  |                 |                   |           |                     |                  | Bracing (T9)         |                 |              |
|                  |                 |                   |           |                     | Inner            | 0.8                  | Pass            |              |
|                  |                 |                   |           |                     |                  | Bracing (T9)         |                 |              |
|                  |                 |                   |           |                     |                  | Bolt Checks          | 76.5            | Pass         |
|                  |                 |                   |           |                     |                  | RATING =             | 76.5            | Pass         |

Program Version 8.1.1.0

APPENDIX B

BASE LEVEL DRAWING



APPENDIX C

ADDITIONAL CALCULATIONS

## Self Support Anchor Rod Capacity



| Site Info |                |
|-----------|----------------|
| BU #      | 841273         |
| Site Name | TRURO, MA      |
| Order #   | 623577, Rev. 1 |

| Analysis Considerations |     |  |
|-------------------------|-----|--|
| TIA-222 Revision        | Н   |  |
| Grout Considered:       | Yes |  |
| I <sub>ar</sub> (in)    | 0   |  |

| Applied Loads                   |        |        |  |
|---------------------------------|--------|--------|--|
|                                 | Comp.  | Uplift |  |
| Axial Force (kips)              | 564.24 | 472.60 |  |
| Shear Force (kips)              | 72.30  | 63.05  |  |
| *TIA-222-H Section 15.5 Applied |        |        |  |

| Considered Eccentricity   |       |  |
|---------------------------|-------|--|
| Leg Mod Eccentricity (in) | 0.000 |  |
| Anchor Rod N.A Shift (in) | 0.000 |  |
| Total Eccentricity (in)   | 0.000 |  |

\*Anchor Rod Eccentricity Applied

#### **Connection Properties**

#### Anchor Rod Data

(12) 2" ø bolts (A572-50 N; Fy=50 ksi, Fu=65 ksi) I<sub>ar</sub> (in): 0

## Analysis Results

| Anchor Rod Summary |                | (units of kips, kip-in) |
|--------------------|----------------|-------------------------|
| Pu_t = 39.38       | φPn_t = 121.88 | Stress Rating           |
| Vu = 5.25          | φVn = 76.58    | 30.8%                   |
| Mu = n/a           | φMn = n/a      | Pass                    |

## **Drilled Pier Foundation**

|                  | 841273         |
|------------------|----------------|
|                  | TRURO, MA      |
| Order Number:    | 623577, Rev. 1 |
| TIA-222 Revison: |                |
| Tower Type:      | Self Support   |

| Applied Loads      |        |       |  |
|--------------------|--------|-------|--|
| Comp. Uplift       |        |       |  |
| Moment (kip-ft)    | 0      | 0     |  |
| Axial Force (kips) | 564.24 | 472.6 |  |
| Shear Force (kips) | 72.3   | 63.05 |  |

| Material Properties      |    |     |
|--------------------------|----|-----|
| Concrete Strength, f'c:  | 3  | ksi |
| Rebar Strength, Fy:      | 60 | ksi |
| Tie Yield Strength, Fyt: | 60 | ksi |

|   | Pier D              | esign Data         |       | Rebar & Pier Optic |
|---|---------------------|--------------------|-------|--------------------|
|   | Depth               | 41.5               | ft    |                    |
|   | Ext. Above Grade    | 0.5                | ft    | Embedded Pole Ing  |
|   | Pier                | Section 1          |       | Belled Pier Input  |
|   | From 0.5' above gra | ade to 41.5' below | grade |                    |
|   | Pier Diameter       | 10                 | ft    |                    |
| - | Rebar Quantity      | 46                 |       |                    |
|   | Rebar Size          | 10                 |       |                    |
|   | Clear Cover to Ties | 3                  | in    |                    |
|   | Tie Size            | 4                  |       |                    |
| _ | Tie Spacing         | 12                 | in    |                    |

| Analysis Results               |             |          |
|--------------------------------|-------------|----------|
| Soil Lateral Check             | Compression | Uplift   |
| D <sub>v=0</sub> (ft from TOC) | 23.12       | 23.12    |
| Soil Safety Factor             | 39.21       | 44.96    |
| Max Moment (kip-ft)            | 1152.22     | 1004.80  |
| Rating*                        | 3.2%        | 2.8%     |
| Soil Vertical Check            | Compression | Uplift   |
| Skin Friction (kips)           | 1274.19     | 1274.19  |
| End Bearing (kips)             | 294.52      | -        |
| Weight of Concrete (kips)      | 467.29      | 350.47   |
| Total Capacity (kips)          | 1568.72     | 1624.66  |
| Axial (kips)                   | 1031.53     | 472.60   |
| Rating*                        | 62.6%       | 27.7%    |
| Reinforced Concrete Flexure    | Compression | Uplift   |
| Critical Depth (ft from TOC)   | 24.05       | 22.18    |
| Critical Moment (kip-ft)       | 1149.45     | 1002.32  |
| Critical Moment Capacity       | 13994.23    | 13400.04 |
| Rating*                        | 7.8%        | 7.1%     |
| Reinforced Concrete Shear      | Compression | Uplift   |
| Critical Depth (ft from TOC)   | 27.95       | 27.95    |
| Critical Shear (kip)           | 138.84      | 121.07   |
| Critical Shear Capacity        | 1107.51     | 1554.07  |
| Rating*                        | 11.9%       | 7.4%     |



| Check Limitation                      |     |  |
|---------------------------------------|-----|--|
| Apply TIA-222-H Section 15.5:         | ~   |  |
| N/A                                   |     |  |
| Additional Longitudinal Ret           | bar |  |
| Input Effective Depths (else Actual): |     |  |
| Shear Design Options                  |     |  |
| Check Shear along Depth of Pier:      | >   |  |
| Utilize Shear-Friction Methodology:   |     |  |
| Override Critical Depth:              |     |  |
| Go to Soil Calculation                |     |  |

| Structural Foundation Rating*      | 11.9% |  |  |
|------------------------------------|-------|--|--|
| Soil Interaction Rating*           | 62.6% |  |  |
| *Rating per TIA-222-H Section 15.5 |       |  |  |

|                      |             | ofile |  |
|----------------------|-------------|-------|--|
| Groundwater Depth 20 | # of Layers | 3 6   |  |

| Layer | Top<br>(ft) | Bottom (ft) | Thickness<br>(ft) | γ <sub>soil</sub><br>(pcf) | γ <sub>concrete</sub><br>(pcf) | Cohesion<br>(ksf) | Angle of<br>Friction<br>(degrees) | Calculated<br>Ultimate Skin<br>Friction Comp<br>(ksf) |       | Ultimate Skin<br>Friction Comp<br>Override<br>(ksf) | Ultimate Skin | Ult. Gross<br>Bearing<br>Capacity<br>(ksf) | SPT Blow<br>Count | Soil Type    |
|-------|-------------|-------------|-------------------|----------------------------|--------------------------------|-------------------|-----------------------------------|-------------------------------------------------------|-------|-----------------------------------------------------|---------------|--------------------------------------------|-------------------|--------------|
| 1     | 0           | 5           | 5                 | 120                        | 150                            | 0                 | 0                                 | 0.000                                                 | 0.000 | 0.00                                                | 0.00          |                                            |                   | Cohesionless |
| 2     | 5           | 20          | 15                | 120                        | 150                            | 0                 | 32                                | 0.000                                                 | 0.000 | 2.15                                                | 2.15          |                                            |                   | Cohesionless |
| 3     | 20          | 23.5        | 3.5               | 60                         | 87.6                           | 0                 | 32                                | 0.000                                                 | 0.000 | 2.21                                                | 2.21          |                                            |                   | Cohesionless |
| 4     | 23.5        | 28.5        | 5                 | 60                         | 87.6                           | 0                 | 62                                | 0.000                                                 | 0.000 | 2.27                                                | 2.27          |                                            |                   | Cohesionless |
| 5     | 28.5        | 31          | 2.5               | 60                         | 87.6                           | 2                 | 0                                 | 1.100                                                 | 1.100 | 1.10                                                | 1.10          |                                            |                   | Cohesive     |
| 6     | 31          | 41.5        | 10.5              | 60                         | 87.6                           | 0                 | 33                                | 0.000                                                 | 0.000 | 0.00                                                | 0.00          | 5                                          |                   | Cohesionless |



# ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IIISoil Class:D - Stiff Soil

 Elevation:
 0 ft (NAVD 88)

 Latitude:
 42.021667

 Longitude:
 -70.075





| Site Soil Class:<br>Results: | D - Stiff Soil |                          |       |  |
|------------------------------|----------------|--------------------------|-------|--|
| S <sub>S</sub> :             | 0.168          | S <sub>DS</sub> :        | 0.179 |  |
| S <sub>1</sub> :             | 0.058          | <b>S</b> <sub>D1</sub> : | 0.093 |  |
| F <sub>a</sub> :             | 1.6            | Τ <sub>L</sub> :         | 6     |  |
| F <sub>v</sub> :             | 2.4            | PGA :                    | 0.087 |  |
| S <sub>MS</sub> :            | 0.268          | PGA M:                   | 0.14  |  |
| S <sub>M1</sub> :            | 0.139          | F <sub>PGA</sub> :       | 1.6   |  |
|                              |                | l <sub>e</sub> :         | 1.25  |  |

## Seismic Design Category B



#### Data Accessed:

## Tue Sep 20 2022

#### **Date Source:**

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.



## Ice

#### Results:

| Ice Thickness:          | 0.75 in.                                        |
|-------------------------|-------------------------------------------------|
| Concurrent Temperature: | 15 F                                            |
| Gust Speed              | 50 mph                                          |
| Data Source:            | Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8 |
| Date Accessed:          | Tue Sep 20 2022                                 |

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

## FROM SELECT BOARD POLICY 13 – APPOINTMENT POLICY

The same questions, listed below, will be asked of all applicants, though Select Board members may have follow-up questions of some applicants, based upon responses in their written applications or their interviews. Applicants will receive the questions in advance of being interviewed.

## QUESTIONS: For all applicants:

1. Please tell us about yourself and why you are interested in joining the \_\_\_\_\_ board, committee, commission.

2. Are there any specific skills that you would bring to the workings of this group?

3. Tell us about any experience you have had working in a group setting.

4. Do you have a sense of the time required to serve and are you able to make that commitment?

## For regulatory and adjudicatory boards, committees, commissions:

1. Have you reviewed the relevant local/state laws and regulations that govern this board, committee, commission?

2. Are you able to make decisions based on the information presented in a case and applicable laws/regulations, regardless of personal opinion?



**TOWN OF TRURO** 

P.O. Box 2030, Truro MA 02666 Tel: (508) 349-7004 Fax: (508) 349-5505

## **POLICY MEMORANDUM #13**

# Date: Adopted March 3, 2004; Revised December 5, 2017, revised September 13, 2022; rev September 27, 2022

\*This policy was revised at the September 13, 2022 Select Board meeting solely to reflect the titles used in the Town Charter for the Town Manager and Select Board and to modify language to be gender neutral. No changes were made to the content of the Policy at that meeting.

**PURPOSE:** The Select Board welcomes a diversity of membership on all of its appointed multimember boards, committees and commissions. This policy provides general information about serving on a town body and aims to ensure consistency and fairness in the Select Board's appointments.

There are four types of boards to which the Select Board makes appointments:

- Advisory, which are given a charge by the Select Board and make recommendations.
- Ad hoc, which are appointed for a specific purpose for a specific period of time to complete a task.
- **Regulatory**, which are governed by both Massachusetts General Law and local regulations.
- Adjudicatory, which are governed by both Massachusetts General Law and local regulations, and consider individual cases brought before it.

At times, the Select Board will make appointments to fill a vacancy on an elected board. The interviews and appointments are made jointly with the members of the board on which the vacancy occurs.

Only full-time Truro residents/voters may be considered for appointment to regulatory boards. The Select Board may consider non-resident taxpayers for appointments to non-regulatory boards. The Select Board has sole discretion to make appointments as it considers to be in the best interests of the town.

**PROCEDURES:** When a vacancy occurs on an appointed board, committee or commission – due to resignation or expiration of a member's term – the Select Board shall advertise the position(s), including these details:

- The name of the board, committee, commission and name of its current chair
- The term(s) of the vacancy/vacancies
- The typical meeting schedule
- How to obtain an application form
- When online/written applications are due

All applicants for boards, committees and commissions shall fill out a written application to serve, either online or on paper. Board, committee and commission members who are seeking reappointment must also reapply, answering the relevant questions based upon their service. New applicants seeking to serve will be given the same consideration as members seeking reappointment. Applicants for vacancies will be interviewed as soon as they can be accommodated on the Select Board's agenda. If there are multiple candidates for a position (or positions), all applicants will be interviewed at the same meeting. If that is not possible, the Select Board will wait until all applicants have been interviewed before making the appointment(s).

The same questions, listed below, will be asked of all applicants, though Select Board members may have follow-up questions of some applicants, based upon responses in their written applications or their interviews. Applicants will receive the questions in advance of being interviewed.

As part of the application process, board, committee, commission chairs will be asked to comment on each applicant, whether a new candidate or a member seeking reappointment.

The Select Board will use the following protocols in interviewing applicants:

- Questions will be related to the board, committee or commission on which the applicant wants to serve.
- Questions asked of applicants for regulatory and adjudicatory bodies will avoid seeking opinions on matters that are governed by local or state regulations or opinions on matters that are likely to come before the board.
- Comments from the board, committee or commission chair will be considered either submitted in writing with the application or live during the interview process.

After all applicants have been interviewed, prior to any nominations, all members of the Select Board will have the opportunity to express their preferences for filling the position(s). Nominations for the position(s) will be taken and voted upon after all Select Board discussion.

If the Select Board chooses to leave a position vacant, the applicant(s) will be given an explanation. The Select Board will write letters of thanks to all members of boards, committees and commissions who finish their service, either through resignation or at the end of their terms.

## **QUESTIONS:**

For all applicants:

- 1. Please tell us about yourself and why you are interested in joining the \_\_\_\_\_ board, committee, commission.
- 2. Are there any specific skills that you would bring to the workings of this group?
- 3. Tell us about any experience you have had working in a group setting.
- 4. Do you have a sense of the time required to serve and are you able to make that commitment?

For regulatory and adjudicatory boards, committees, commissions:

- 1. Have you reviewed the relevant local/state laws and regulations that govern this board, committee, commission?
- 2. Are you able to make decisions based on the information presented in a case and applicable laws/regulations, regardless of personal opinion?

For advisory boards, committees, commissions:

1. Have you followed the work of this group?

2. Are there any ideas or projects you would suggest or pursue as a new member?

**OATH OF OFFICE:** Written notification of appointment is issued to newly appointed board members, who must report to the Town Clerk's office to be sworn in. Elected and appointed officials must sign an acknowledgement of receipt of information on the state's Open Meeting Law. They also must complete state-mandated online ethics/conflict-of-interest training, required every two years. Members of all boards will be given the Truro Boards, Committees and Commissions Handbook. Newly appointed members are expected to familiarize themselves with the charge and the workings of the board to which they are appointed. They must also adhere to protocols in seeking any assistance from town staff.

TERM OF OFFICE: The full term of office for most positions on appointed boards, committees and commissions is three years, ending on June 30 of the third year. Terms are staggered to assure continuity as new members are elected or appointed.

**RESIGNATION:** If a board member can no longer fulfill the duties of office, the member must submit a written resignation, including the effective date, to the appointing authority, with a copy to the board chairperson and the Town Clerk. The Select Board encourages board members who resign to specify their reasons, if other than personal. This may be done through an exit interview with the board chair or the Select Board liaison

**ATTENDANCE:** If a member or alternate member of an appointed board is absent for four consecutive meetings without approval by the rest of the board, the chair will alert the appointing authority and that member will be replaced.

**RECALL / REMOVAL:** Members of appointed boards may be removed by the appointing authority if they are found to violate professional codes of conduct. The town charter provides that any appointed board member may be suspended or removed from office for good cause. These include: incapacity other than temporary illness; inefficiency and/or inability to perform assigned tasks; insubordination and/or refusal to carry out lawful instructions; or conduct unbecoming to the office and/or which reflects adversely upon the town.

Know Red

Kristen Reed, Chair

Sand

John Dundas, Clerk

Attact

Robert Weinstein, Chair

Anon Cim

Susan Areson

Sup J. R

Stephanie Rein Truro Select Board



# **TOWN OF TRURO**

PLANNING BOARD Meeting Minutes September 7, 2022 – 5:00 pm REMOTE PLANNING BOARD MEETING

Members Present (Quorum): Rich Roberts (Vice Chair); Jack Riemer (Clerk); Paul Kiernan; Ellery Althaus

Members Absent: Anne Greenbaum (Chair); R. Bruce Boleyn; Caitlin Townsend

<u>Other Participants</u>: Town Planner/Land Use Counsel Barbara Carboni; Select Board Liaison John Dundas; Timothy Greene of TerraSearch, LLC and representative for Crown Castle (Applicant)

Remote meeting convened at 5:03 pm, Wednesday, September 7, 2022, by Vice Chair Roberts who announced that this was a remote public meeting aired live on Truro TV Channel 18 and was being recorded. Town Planner/Land Use Counsel Carboni also provided information as to how the public may call into the meeting or provide written comment. Members introduced themselves to the public.

## Public Comment Period

Public comment, for items not on the agenda, was opened by Vice Chair Roberts and there were none.

#### Planner Report

Town Planner/Land Use Counsel Carboni reported that there will be a Local Comprehensive Planning Committee (LCPC) live event held on October 15<sup>th</sup> at the Community Center from 10am-1pm. The Open Space Committee will have its first meeting with consultant Jeff Thibodeau tomorrow morning.

#### Chair Report

Vice Chair Roberts announced that there would be no Chair Report this evening.

#### **Board Action/Review**

**2022-005/PB - Regan McCarthy** seeks approval of Form A- Application for Determination that Plan Does Not Require Approval (ANR) pursuant to Section 2.2 of the Town of Truro Rules and Regulations Governing the Subdivision of Land with respect to property at 35A Higgins Hollow Road, Truro MA, Atlas Map 47, Parcel 2, Registry of Deeds title reference: Book 20807, Page 42.

Vice Chair Roberts announced that the Applicant requested a continuance until the Planning Board meeting on September 21, 2022. Town Planner/Land Use Counsel Carboni confirmed the request and stated that no vote was necessary to grant the continuance.

**2022-009/SPR - Crown Castle**, on property located at 344 Route 6 (Atlas Map 39, Parcel 172). Applicant seeks a Special Permit under Section 40.5 of the Truro Zoning Bylaw, and as an Eligible Facilities Request

for a minor modification under Section 64091 and the rules of the Federal Communications Commission ("FCC"), to modify an existing tower: remove or replace antennas, ancillary equipment, and ground equipment as per plans for an existing carrier on an existing wireless communication facility; and replace equipment on existing concrete pad. Such modification will not substantially change the physical dimensions of such tower or base station. The modification does not constitute a substantial change to the existing tower under 47 C.F.R. §1.6100.

Vice Chair Roberts recognized Mr. Greene who provided a summary to the changes which were proposed. Due to the merger between T-Mobile and Sprint, there will be a consolidation of equipment that will result in less equipment on the site. Vice Chair Roberts and Members discussed the following questions and concerns with Mr. Greene:

There is an issue of sparce cellular coverage for emergency service calls in Truro, particularly from the beaches, so are the services provided by the tower redundant? Mr. Greene responded that it is not redundant.

Does the tower have any antennas for emergency services? Mr. Greene was unsure if any antenna was specifically designated for public safety, but he said that it could be added.

What is the fall zone for this tower as it is adjacent to the Public Safety Facility? Mr. Greene responded that the tower is rated for a wind speed up to 139 miles per hour and has been on location for nearly twenty years without issue. Mr. Greene didn't identify a specific fall radius but emphasized that the wind speed ratings for the tower have been significantly increased over the last twenty years and the tower is compliant with today's standards. The risk factor category for the tower is 2.

Vice Chair Roberts noted that the risk factor category for the tower is 2 but expressed concern that the Applicant's engineer, located in Oklahoma, who performed the study may not know that the tower is in such proximity to the Public Safety Facility as it is not indicated on the Site Plan.

Is it possible to install repeaters to ensure better coverage in emergency situations? Mr. Greene replied that he does not represent the carrier but Crown Castle.

Vice Chair Roberts asked Mr. Greene to resubmit an analysis addressing those antennas at 122' can be removed unless they are placeholders to be used in the future and increase the risk factor category to 3. Mr. Greene agreed to provide this information by the next meeting on September 21<sup>st</sup>.

## **Development of Warrant Articles**

Vice Chair Roberts recognized Member Kiernan who said that he is compiling an email list to use for outreach as there are 150 different people who sit on various boards/committees/commissions in Truro. A challenge has been that individuals who serve on regulatory boards have Town email addresses and others use either business or personal email addresses. Once the list is compiled, with assistance from Town Hall staff, Member Kiernan will contact those individuals for input on changes for Warrant Articles.

## **Minutes**

Vice Chair Roberts, after consulting with Town Planner/Land Use Counsel Carboni, deferred the approval of the Minutes on tonight's Agenda until the next Planning Board meeting as only two Members from those meetings were present tonight.

Vice Chair Roberts announced that the next Planning Board meeting will be on Wednesday, September 21, 2022, at 5pm.

Member Riemer made a motion to adjourn the meeting at 5:49 pm. Member Kiernan seconded the motion. So voted, 4-0, motion carries.

Respectfully submitted,

Alexander O. Powers Board/Committee/Commission Support Staff

## TRURO PLANNING BOARD Work Session September 28, 2022

## Minutes

Attending: Anne Greenbaum – Chair; Rich Roberts – Vice Chair; Jack Riemer – Clerk; Paul Kiernan, Ellery Althaus, Caitlin Townsend – Members; Barbara Carboni – Town Planner & Land Use Counsel

- 1) Discussion of Term Length for Charter Review Committee meeting November 17, 2022
  - Question why is the term 5 years?
    - When Planning Board establish Select Board suggested 5 members for staggered 5-year terms
  - Comments
    - o Sometimes institutional memory guides Boards, with 3-year terms can lose that
    - Member 1.9 years originally the 5-year term was daunting, now doesn't seem that way, need the time, there is steep learning curve. 5 years, maybe 4
    - Member 1.5 years learning & getting the hang of it. 3 feels short 5, maybe 4
    - o 10 year member time goes by fast, never enough time to learn everything
      - Maybe add alternate members to try out planning board, start learning
  - State law 5-9 members, elected or appointed
- 2) Review Draft 2023 Calendar
  - 1 change change 1<sup>st</sup> September meeting from September 6 to September 13.
- 3) Interviews for open Planning Board position
  - All members available October 25, 2022
  - Question will new Select Board appointment policy be in effect?
  - Chair to coordinate with Select Board chair concerning interview logistics/structure
  - Members to bring potential questions to next Select Board meeting
- 4) Date for Review of Housing Production Plan
  - Preference to not do as part of regular Planning Board meeting but to have separate meeting
  - Confirmed availability of all for Thursday December 8 4:15/4:30 pm
- 5) Potential Warrant Articles Decisions on whether to continue and if so next steps
  - Driveway grades Select Board passed new curb cut policy earlier this year that somewhat addresses this.
    - i. Planning Board will not propose bylaw change

- Street Definition Rich Robert has been researching this issue and has put together document with: past attempts, history, identified major issue, and examples from other Cape towns.
  - i. Planning Board will continue to develop potential warrant article
  - ii. Next steps
    - Chair to talk with John Dundas, Select Board liaison about early Select Board input
    - Identified others to engage now
    - Report to all Board members
- Lot Coverage/Site Clearing Paul Kiernan presented update, with information on other towns efforts.
  - i. Planning Board will continue to develop potential warrant articles
  - ii. Next steps
    - Chair and Member Kiernan to develop 1- or 2-page summary document to send to the following Boards to update them and ask for their input. (Board of Health, Climate Action Committee, Conservation Commission, Open Space Committee, Select Board, Walsh Property Community Planning Committee), Zoning Board of Appeals)
    - Also, will be sent to Emily Beebe Health & Conservation Agent
- Housing Board looking at number of potential zoning articles including
  - i. Duplexes
  - ii. Multifamily Structures
  - iii. Mixed Used Structures
  - iv. Overlay District(s)
  - v. Allowing Affordable Housing on Undersize lots and lots that otherwise do not meeting Zoning bylaws (looking at recently passed article in Wellfleet)
  - vi. Ad Hoc housing group informed of this list and discussing these and potential other possibilities.
- Discussion of when to hold community forums on

Next Planning Board Meeting – Wednesday October 12, 2022 at 5 pm

Next Work Session on Warrant Article – Wednesday October 26, 2022

Actions

• Agenda item – enforcing date(s) for supplemental material

Respectfully submitted,