

Truro Planning Board Agenda Remote Zoom Meeting
 Wednesday, December 20, 2023 - 5:00 pm

Join the meeting from your computer, tablet or smartphone:
 https://us02web.zoom.us/i/81559490623

Dial in: +1-646-931-3860 or +1-305-224-1968
Meeting ID: $81559490623 \quad$ Passcode: 897442

Open Meeting

This will be a remote public meeting. Citizens can view the meeting on Channel 8 in Truro and on the web on the "Truro TV Channel 8" button under "Helpful Links" on the homepage of the Town of Truro website (www.truro-ma.gov). Click on the green "Watch" button in the upper right corner of the page. Please note that there may be a slight delay (approx. 15-30 seconds) between the meeting and the television broadcast/live stream.
Citizens can join the meeting to listen and provide public comment by entering the meeting link; clicking on the agenda's highlighted link; clicking on the meeting date in the Event Calendar; or by calling in toll free. Citizens will be muted upon entering the meeting until the public comment portion of the hearing. If you are joining the meeting while watching the television broadcast/live stream, please lower or mute the volume on your computer or television during public comment so that you may be heard clearly. Citizens may also provide written comment via postal mail or by emailing Liz Sturdy, Planning Department Administrator, at esturdwairuro-ma.gov.

Public Comment Period

The Commonwealth's Open Meeting Law limits any discussion by members of the Board of an issue raised to whether that issue should be placed on a future agenda. Speakers are limited to no more than 5 minutes.

1. Planner Report

2. Chair Report
3. Minutes

- November 15, 2023

Public Hearing - New

2023-004/PB SBA Communications for DISH Wireless - 5 Town Dump Road (Atlas Map 55, Parcel 2A). Applicant seeks a Special Permit under $\S 40.5$ to modify existing collocated equipment.

Board Discussion

- Planning Board priorities for possible 2024 ATM zoning bylaw changes

Next Meeting: Wednesday, January 10, 2024 at 5:00 pm

Adiourn

To: Truro Planning Board
From: Barbara Carboni, Town Planner and Land Use Counsel
Date: December 15, 2023
Re: Meeting December 20, 2023

2023-004/PB SBA Communications for DISH Wireless - 5 Town Dump Road (Map 55, Parcel

 2A). Applicant seeks a Special Permit under $\S 40.5$ to install additional antennae on existing telecommunications tower and install certain equipment at the base of the tower.
Existing Conditions and Proposed Project

The telecommunications tower at the Town Dump is 190 feet in height. Existing panel antennas are located at heights of $187^{\prime} 3^{\prime \prime} ; 175^{\prime} ; 165^{\prime}$ and 138^{\prime}. This is best seen on Sheet A-2 of the plan set. The applicant (SBA Communications, on behalf of DISH Wireless), seeks to add three antennas to the existing tower at a height of 155 ,' and to install additional equipment at the base of the tower. ${ }^{1}$

Relief required

Zoning Bylaw s. 40.5 requires a special permit for "a communications structure, building or appurtenance." See s. 40.5.B.1. This Board's past practice with an application for antenna additions or swap outs has been to grant a modification to the existing special permit. That is recommended in this case.

Bylaw Section 30.8 requires that for any special permit application, the Board may approve the proposal only if it finds that "the proposed use is in the opinion of the Board in harmony with the general public good and intent of this bylaw." Such finding is therefore required in this case.

Waivers

It has also been the Board's past practice to grant waivers from certain requirements of Section 40.5 , such as B. 17 (pre application meeting); B. 19 (certain written information); B. 20 (additional written information). Such waivers are allowed under Section 40.5(B)(24) where the Board finds

[^0]that the requested waiver "would not be detrimental to the public interest, cause the Town any expense, or be inconsistent with the intent and purpose of this bylaw."

Due to the limited nature of the project, and consistent with comparable prior applications/ special permits, it would be appropriate to grant such waivers in this case. It does not appear that an itemized list of waivers has been submitted. In a 2020 decision on modification to T-Mobile equipment on the Town's other telecommunications tower (344 Route 6), the Board waived the requirements under Section $40.5(\mathrm{~B})(19)$ (a)-(i), and the requirements of Section $40.5(\mathrm{~B})(20)(\mathrm{b})$, (c) and (d).

Application as Eligible Facilities Request

As the Board is aware, telecommunications facilities are regulated in the first instance by Federal law. A streamlined process is set out in federal regulations for approval of modifications to existing facilities; this is accomplished through the submission of an Eligible Facilities Request. If the proposal meets the criteria for an Eligible Facilities Request (essentially determinations that the changes are minor), it must be granted.

With the more detailed Bylaw special permit process in place, the Eligibility Facilities Request process would seem redundant. Nevertheless, compliance with the formalities is recommended, and the Board has previously addressed the EFR in its decisions on telecommunications equipment swap outs.

The applicant's EFR references six criteria specified by the FCC in a 2014 Report and Order, and states the applicant's "certification that each of the review criteria will be met." EFR at pp. 2-3. The applicant may reasonably be asked to briefly explain/confirm the proposal's compliance with each of the criteria (e.g., \#2."The modifications to the Transmission Equipment do not protrude from the edge of the tower by twenty fee or more than the width of the Tower (whichever of these two dimensions is greater) at the level where the transmission equipment modifications are made.")

In previous decisions of the Planning Board with respect to equipment installation, several standard conditions (e.g., requiring communication with the DPW director and Police/Fire Chief as needed prior to commencing work; removal of the equipment from the tower and site when no longer in use) have been included. The inclusion of these conditions is recommended.

TOWN OF TRURO

PLANNING BOARD

Meeting Minutes
November 15, 2023-5:00 pm
REMOTE PLANNING BOARD MEETING

Members Present (Quorum): Rich Roberts (Chair); Anne Greenbaum (Vice Chair); Jack Riemer (Clerk); Ellery Althaus; Paul Kiernan; Caitlin Townsend; Virginia Frazier

Members Absent:

Other Participants: Town Planner/Land Use Counsel Barbara Carboni; Select Board Liaison John Dundas; DPW Director Jarrod Cabral; Health and Conservation Agent Emily Beebe; Robin Reid (Attorney for Gloria and Willie Cater - Trustees); Kate Cater (Attorney for Gloria and Willie Cater - Trustees); David Clark (Engineer for Gloria and Willie Cater - Trustees); Donald Poole (Surveyor for Gloria and Willie Cater - Trustees); Courtney Simmons (Attorney for Lucy Clark); Daniel Johnston (Attorney for Property Owners of 9 Benson Road); Gail Wickstrom (Truro Resident); Fred Gaechter (Truro Resident and Trustee of the Truro Conservation Trust); Chuck Steinman (Truro Voter); Lucy Clark (Truro Resident)

Remote meeting convened at 5:00 pm, Wednesday, November 15, 2023, by Chair Roberts who announced that this was a remote public meeting aired live on Truro TV Channel 8 and was being recorded. Town Planner/Land Use Counsel Carboni provided information as to how the public may call into the meeting or provide written comment. Members introduced themselves to the public.

Public Comment Period

Public comment, for items not on the agenda, was opened by Chair Roberts. Chair Roberts recognized Ms. Wickstrom who commented on the Planning Board's regulating temporary signs on South Highland Road.

Planner Report

Town Planner/Land Use Counsel Carboni announced that the ZBA had recently upheld Building Commissioner Rich Stevens' cease-and-desist order pertaining to 100 Route 6 (Robert Martin-Applicant) and Mr. Martin had until January 15, 2024, to remove all the materials from the property. Town Planner/Land Use Counsel Carboni is preparing the decision and order in that case.

Chair Report

Chair Roberts reported that the Town Meeting was rescheduled for Tuesday, November 28, 2023, at 5:30 pm, at the Truro Central School. Chair Roberts noted that at last night's Select Board meeting there was a discussion about the creation of a Zoning Task Force. Town Planner/Land Use Counsel Carboni noted that the Town of Eastham has a Zoning Task Force that has been instrumental in the preparation of Zoning articles for Town meetings. This task force is appointed by the Select Board and the Select Board expressed interest in creating a Zoning Task Force by using the Eastham model.

Minutes

Chair Roberts led the review of the minutes from October 4, 2023.

Member Frazier made a motion to approve the minutes of October 4, 2023, as written.
Vice Chair Greenbaum seconded the motion.
Roll Call Vote:
Vice Chair Greenbaum - Aye
Member Townsend - Aye
Member Althaus - Aye
Member Frazier - Aye
Member Riemer - Aye
Member Kiernan - Aye
Chair Roberts - Aye
So voted, 7-0-0, motion carries.

Temporary Sign Permit Application

Marisa Picariello - Payomet Performing Arts Center for two (2) signs, 48" x 36", to be located on South Highland exit off Route 6E and on Shore Road exit off Route 6W for events October, November, and December.

There was no representative of the Payomet Performing Arts Center present and Chair Roberts led the discussion on whether or not this application should be considered based upon the earlier discussion the Members had with DPW Director Cabral regarding temporary sign permits and South Highland Road. Town Planner/Land Use Counsel Carboni opined that although no representative was present, Members should act on this application and could condition the approval. Town Planner/Land Use Counsel Carboni also noted that the Members could approve the application but change the location.

Vice Chair Greenbaum made a motion to approve the Payomet Performing Arts Center's application for a temporary sign permit with the change of location for sign \#1 from South Highland Road exit off Route 6 East to the South Hollow Road exit off Route 6 East.
Member Townsend seconded the motion.
Prior to the vote, Member Althaus recused himself due to his wife's involvement with the Payomet Performing Arts Center. Chair Roberts also recognized Ms. Wickstrom who commented on this topic and recommended that the Members consider a policy or updated Bylaw that is fair to all businesses. Town Planner/Land Use Counsel Carboni opined for the Members to vote on the motion and to defer any policy discussion to another meeting.
Roll Call Vote:
Vice Chair Greenbaum - Aye
Member Townsend - Aye
Member Frazier - Aye
Member Riemer - Aye
Member Kiernan - Aye
Chair Roberts - Aye
So voted, 6-0-0, motion carries.

Board Action/Review

Preliminary Subdivision - 9B Benson Road, Fisher Road Realty Trust, Gloria J. Cater and Willie J. Cater, Trustees.

Chair Roberts recognized Members Kiernan and Riemer who both stated that they had filed individual disclosure forms in accordance with M.G.L. Chapter 268A §23 (b) with the Town Clerk so that they may participate in this matter and not recuse themselves.

Chair Roberts recognized Attorney Reid who introduced the Trustees and their present representatives, provided background information, and stated the materials provided in the Members' packets for this review.

Members commented and discussed with Attorney Reid and Town Planner/Land Use Counsel Carboni the following highlighted topics: the Trustees' right of way granted by the Land Court; the adequacy of access; the driveway to the subdivision; requirements to determine that the Subdivision Plan is compliant; Rules and Regulations 3.8 Rights of Access; and Rules and Regulations 3.9 Adequate Access to the Site.

At the invitation of Chair Roberts, Mr. Poole provided a brief overview of the subdivision.

Chair Roberts recognized Mr. Gaechter, Attorney Simmons, and Attorney Johnston who commented on this matter. Attorney Simmons, Attorney Johnston, and Mr. Gaechter agreed to allow the Members of the Planning Board to conduct a site visit on their respective client or organization's abutting property.

Town Planner/Land Use Counsel Carboni recommended to the Members that technical assistance be requested on behalf of the Planning Board to the Cape Cod Commission in regard to this matter.

Chair Roberts recognized Mr. Steinman who provided background information as to the historical and cultural importance of the property to the Town.

Chair Roberts asked the Members if there was any other information that should be requested from the Trustees regarding this matter and there were none. After a "by hand vote" of the Members in agreement, Chair Roberts asked Town Planner/Land Use Counsel Carboni to request technical assistance from the Cape Cod Commission in this matter with respect to location within the Hopper landscape.

Town Planner/Land Use Counsel Carboni opined that this should be a group site visit and the Applicants' team can coordinate the group site visit date and then provide the information to Town Planner/Land Use Counsel Carboni. Chair Roberts recognized Ms. Clark who commented on the proposed site visit.

Board Discussion

Chair Roberts led the discussion and review of the memorandum from DPW Director Cabral regarding South Highland Road data. DPW Director Cabral also recommended moving any signage related to the commercial facilities on South Highland Road further north directing vehicle traffic onto South Hollow Road. DPW Director Cabral has not yet spoken with Payomet as sign enforcement is not his jurisdiction but it is with the Building Commissioner. Members discussed Town Planner/Land Counsel Carboni and DPW Director Cabral to engage with DOT and DPW Director Cabral cautioned that this would take some time.

Chair Roberts led the discussion on temporary sign permits with the Members. Members commented and discussed the following topics: the suggestion to have a public discussion to ensure the needs of the community, neighbors and business owners are met; removing temporary sign permits from the

Planning Board's authority to the building commissioner as a result of a Zoning Bylaw change; and the state will allow communities to put directional signs on their state signs (i.e. this way to the Payomet).

Chair Roberts said that a public discussion on this topic is the right next step in this process and this topic will be added to the agenda of a future meeting.

Chair Roberts led the discussion on Planning Board Budget Request for FY2025. Chair Roberts said that funds should be requested for any community outreach events to cover the costs of beverages and food. Members also suggested funds for the following topics: direct mailings to extend information to a larger audience in order to receive more input on important Town issues and continuing education for the Members.

Chair Roberts led the discussion on the Planning Board's priorities for possible FY2024 Annual Town Meeting Bylaw changes. Chair Roberts noted that Affordable Housing on Nonconforming Lots would be the top priority for the possible FY2024 ATM Bylaw changes. Chair Roberts reviewed the other following items of priority and interest: revisit the House Size Bylaw for the Residential District and the Seashore District, Lot Coverage, Gable Roof versus Flat Roof.

Chair Roberts also mentioned other possibilities on the list: Lot Clearing and the Street Inventory. Chair Roberts noted that the topic of Temporary Sign Permits was just added on earlier this evening.

Chair Roberts proposed pursuing six priorities and setting a date (the second Planning Board's meeting in December) to re-evaluate progress as the Warrant will be open in February 2024. Chair Roberts reviewed the six priorities and assigned Members to the priorities based upon their interest.

Chair Roberts and Town Planner/Land Use Counsel Carboni briefly reviewed the agenda for the next meeting on December 6, 2023.

Member Frazier made a motion to adjourn at 7:24 pm.

Vice Chair Greenbaum seconded the motion.
Roll Call Vote:
Vice Chair Greenbaum - Aye
Member Althaus - Aye
Member Townsend - Aye
Member Frazier - Aye
Member Riemer - Aye
Member Kiernan - Aye
Chair Roberts - Aye
So voted, 7-0-0, motion carries.

Respectfully submitted,

Alexander O. Powers
Board/Committee/Commission Support Staff

Town of Truro Planning Board
24 Town Hall Road
Truro, MA 02666

RE: Dish NSD Project No. BOBOS00593A
SBA Project No. MA12227-A
5 Town Dump Road, Truro, MA 02666

Good afternoon:

SBA Communications will be collocating the Dish Network on our existing cell tower located at 5 Town Dump Road, Truro, MA. * Scope of work will include but not be limited to the installation of (3) new antennas \& (6) Radios on (3) new sector frame mounts.

Enclosed please see:
(1) Original and (9) copies of:

- This Cover Letter
- Planning Board Application for Modification to Existing Telecommunications Structures by Special Permit Under 40.5 Procedures.
- Zoning Board of Appeals Application for Hearing
- Certified Abutters List Request Form
- Building Permit Application
- MA State Insurance Information
- Eligible Facilities Request (EFR)
- Structural Analysis
- Appurtenance Mount Analysis Report
- Construction Drawings
- Electromagnetic Emissions Report

Please let this letter additionally serve as formal request for a waiver for compliance with §40.5.B.(19) of the Truro Zoning Bylaws, as this is a new colocation on an existing in service telecom tower.

Thank you,

Catherine Ware

Site Development Specialist
SBA Communications
134 Flanders Road
Westborough, MA 01581
(917)868-8365

CWare@sbasite.com

[^1]
Town of Truro Planning Board

P.O. Box 2030, Truro, MA 02666

APPLICATION FOR MODIFICATIONS TO EXISTING TELECOMMUNICATION STRUCTURES BY SPECIAL PERMIT UNDER §40.5 PROCEDURES

To the Town Clerk and the Planning Board of the Town of Truro, MA
Date 8 8/25/2023

The undersigned hereby files an application with the Truro Planning Board for a Special Permit to modify an existing telecommunication structure pursuant to $\S 40.5$ of the Truro Zoning Bylaw:

1. General Information

Proposed project (describe): Dish Wireless collocation at existing SBA cell site: Install (3) antennas and associated equipment per
attached plans. No change to tower/height or compound/size. Application is an Eligible Facilities Request under Section 6409 of the
Middle Class Tax Relief Act and reserves its rights thereunder
Property Address 5 Town Dump Road

Map(s) and Parcel(s) 55/22-A
Registry of Deeds title reference: Book \qquad , Page \qquad , or Certificate of Title
Number \qquad and Land Ct. Lot \# \qquad and Plan \# \qquad
Applicant's Name Catherine Ware / SBA Communications
Applicant's Legal Mailing Address 134 Flanders Road, Westborough, Ma 01581 Suite 125
Applicant's Phone(s), Fax and Email Cware@sbasite.com 917-868-8365
Applicant is one of the following: (please check appropriate box) *Written Permission of the owner is required for submittal of this application.

$$
\square \text { Owner } \square \text { Prospective Buyer* } \square \text { Other* }
$$

Owner's Name and Address SBA Towers II LLC
Owner's Phone(s), Fax and Email Cware@sbasite.com 917-868-8365
Representative's Name and Address Catherine Ware 134 Flanders Rd, Westborough Ma 01581
Representative's Phone(s), Fax and Email
2. Waiver(s) Request - The Planning Board may, upon the request of the applicant, waive submission requirements of $\S 40.5$.B.19.
3. The completed application shall also be submitted electronically to the Planning Department Assistant at esturdv@truro-ma.gov in its entirety (including all plans and attachments).

- The applicant is advised to consult with the Building Commissioner and/or Planning Department prior to submitting this application.

[^2]TOWN OF TRURO

Assessors Office Certified Abutters List Request Form

NOV 142023

DATE: $10-23-23$
NAME OF APPLICANT: DISH WIRELESS
NAME OF AGENT (if any): CATLERINE WARE - SBA COMOMDications
mauling address: 134 FlandeB RD Suite 125 Westbargugh MA 01581
CONTACT: HOME/CELL 9178688365 EMAIL

\qquad
PROPERTY IDENTIFICATION NUMBER: MAP $\quad 55$ PARCEL $2 \quad \frac{\text { EXT. } A}{\text { (if condominium })}$

ABUTTERS LIST NEEDED FOR: (please check all applicable)

FEE: $\$ 15.00$ per checked item (Fee must accompany the application unless other arrangements are made)

Board of Health ${ }^{5}$
__ Cape Cod Commission
Conservation Commission ${ }^{4}$
Licensing
Type: \qquad
Planning Board (PB)
$\underline{\checkmark}$ Special Permit ${ }^{1}$ Site Plan ${ }^{2}$ Preliminary Subdivision ${ }^{3}$ Definitive Subdivision ${ }^{3}$
Accessory Dwelling Unit (ADU) ${ }^{2}$
\qquad Other \qquad (Please Specify)

Zoning Board of Appeals (ZBA)
\checkmark special Permit ${ }^{1}$
__ Variance ${ }^{1}$
\qquad

TRURO ASSESSORS OFFICE
PO Box 2012 Truro, MA 02666
Telephone: (508) 214-0921
Fax: (508) 349-5506

Date: November 15, 2023
To: Catherine Ware, SBA Communications
From: Assessors Department
Certified Abutters List: 5 Town Dump Road (Map 55 Parcel 2 Ext A)
Planning Board - Special Permit
Attached is a combined list of abutters for 5 Town Dump Road (Map 55 Parcel 2 Ext A).
The current owners are SBA Towers II LLC.
The names and addresses of the abutters are as of November 10, 2023 according to the most recent documents received from the Barnstable County Registry of Deeds.

5 Town Dump Road
Map 55 Parcel 2 Ext A
Planning Board - Special Permit
TOWN OF TRURO, MA
BOARD OF ASSESSORS
P.O. BOX 2012, TRURO MA 02666

Abutters List Within 300 feet of Parcel 55/2/A

USA-DEPT OF INTERIOR
Cape Cod National Seashore 99 Marconi Site Rd Wellfleet, MA 02667

TOWN OF TRURO
PO BOX 2030
TRURO, MA 02666-2030

S B A TOWERS II LLD
TAX DEPT MA 12227-A
8051 CONGRESS AVE
COCA PATON, FL 33487

TOWN OF TRURO
PO BOX 2030
TRURO, MA 02666-2030

Estimated Construction Cost: 40,000			Debris Disposal: (Landfill or Company Name)
Floor Area: (Proposed Work Only)		Basement: \square unfinished N/A	N/A $\quad \square$ finished N/A
$1^{\text {st }} \mathrm{flr}: \mathrm{N} / \mathrm{A}$	$2^{\text {nd }}$ flr: N / A		Porch/Deck: N/A Other:
\#fireplaces:	\#chimneys:		\#bathrooms: existing ____ proposed
\#bedrooms: existing ______ proposed _______			
Type of Heating System: N / A			Type of Cooling System: N / A
CONTRACTOR INFORMATION**HOMEOWNER'S AFFIDAVIT REQUIRED IF OWNERS ARE DOING THEIR OWN WORK (RESIDENTIAL PROJECTS ONLY)			
Contractor Name:Timberline Construction Company			
Address:300 Pine Street, Canton, MA 02021			
Phone: (339)502-5000			Email: borlandi@timberlinecommunications
CSL\#:			
OFFICE USE			
HEALTH/ CONSERVATION AGENT Review			
Signature:			Date:
Other Comments:			
BUILDING COMMISSIONER Review \& Approval:			
Signature:			Issuance Date:

BUILDING PERMIT APPLICATION DOCUMENT CHECKLIST

This checklist is part of the permit application and must be completed. If not completed the application may be considered incomplete and cause the permit to be denied.

Please note that marked-up archival drawings do not constitute acceptable documents for permitting purposes.

\square One and/or Two Family Home

\square Completed application form1 copy original site plan showing building setbacks and grades.2 (min.) copies building plans - One can be full size if greater than 11×17. One must be no greater than 11×17 for department filing. Electronic version is acceptable, in addition.

Drawings indicating all relevant information including but not limited to:

- Fully dimensioned foundation, floor and structural plans;
- Building elevations showing finish materials and critical dimensions;
- Building/wall sections describing building construction, energy related details and showing critical vertical dimensions.
- Smoke, CO and heat detectors must be shown.
- Door and window information demonstrating conformance with minimum room and dwelling egress and emergency escape.
- Exterior window and door information demonstrating conformance with light, ventilation and energy requirements.
- Location and design of any required fire separation assemblies.

All structural conditions noted on plans - braced wall lines indicated and analysis shown and/or engineered solution with registered design professional's certification and/or other prescriptive solution allowed by Code.
$\square 1$ copy Energy Code compliance documents (check only one below)
\square HERS/performance rating document - new construction
\square ResCheck (2015 MA) - additions/alterations- per 2015 IECC R502 \& 503
\square Prescriptive - values shown on plans - see 2015 IECC table R402.1.2 and other req's.
\checkmark
Photocopy of CSL and HIC (if applicable) shown on application form
\square Worker's Compensation Insurance Affidavit and copy of current certificate of insurance
\square Homeowner's License Exemption (if qualified and there is no CSL)
\square Copy of recorded approvals from local regulatory boards
If street access is required and property is on a Town road, copy of Curb Cut approval from the Board of Selectmen

For applications for Modular and other than 1\&2 Family Structures see Checklist on next page.

Modular Home (Homeowner license exemption not allowed)
$\square 2$ copies of foundation plan
\square Approved plans by MA Board of Building Regulations \& Standards with evidence of 3rd party inspection
Manufacturer's certification of installer/set crew.

Structures Other than 1 \& 2 Family Home

\square
 Completed Application form

Stamp and signature of registered design professional
2 (min.) copies building plans - One can be full size if greater than 11×17. One must be no greater than 11×17 for filing. Electronic version is acceptable, in addition. Drawings must indicate all relevant information including but not limited to: Fully dimensioned foundation, floor and structural plans; fire separation assemblies; door, window and room finish schedules; building elevations with critical dimensions; building/wall sections describing building construction and energy related details and showing critical vertical dimensions.

\squareCOMcheck Envelope, Lighting and Mechanical Compliance Certificates and Plan Review Inspection Checklist for the purposes of demonstrating compliance with the energy code.
\qquad Construction Control Document(s)Tier 1 Fire Protection System document per section 902.2.1
Code analysis indicating (but not limited to) all use groups, construction types, allowable areas, fire separations, egress paths and distances. This analysis can be part of drawing set.Contractor credentials
Worker's Compensation Insurance Affidavit and copy of current certificate of insurance
Recorded copy of any local regulatory board approvals
If modular construction see items above

Notes: CERTIFICATE OF LIABILITY INSURANCE

HJSESERKO

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER, AND THE CERTIFICATE HOLDER.

IMPORTANT: If the certificate holder is an ADDITIONAL INSURED, the policy(ies) must have ADDITIONAL INSURED provisions or be endorsed. If SUBROGATION IS WAIVED, subject to the terms and conditions of the policy, certain policies may require an endorsement. A statement on this certificate does not confer rights to the certificate holder in lieu of such endorsement(s).

PRODUCER
Henderson Brothers Inc
920 Ft. Duquesne Blvd.
Pittsburgh, PA 15222

INSURED

SBA Communications Corporation 8051 Congress Ave.

Boca Raton, FL 33487

CONTACT

PHONE	
(A/C, No, Ext): (412) 261-1842	FAX
(A/C, No):(412) 261-4149	

E-MALL ADDRES: mailroom@hendersonbrothers.com
INSURER(S) AFFORDING COVERAGE \quad NAIC \# insurer a : Travelers Property Casualty Company of America 25674 insurer b :The Charter Oak Fire Ins. Co. 25615 insurer c : The Hartford Company Payable 29424 INSURERD: INSURERE:
INSURER F :

COVERAGES
CERTIFICATE NUMBER:
REVISION NUMBER:
THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NAMED ABOVE FOR THE POLICY PERIOD INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO ALL THE TERMS, EXCLUSIONS AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAIMS.

DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required)
For Informational Purpose Only

CERTIFICATE HOLDER

Evidence of Coverage

CANCELLATION

SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.

AUTHORIZED REPRESENTATIVE

AGENCY Henderson Brothers Inc		NAMED INSURED SBA Communications Corporation 8051 Congress Ave. Boca Raton, FL 33487
Policy Number		
SEE PAGE 1		
CARRIER	NAIC CODE	
SEE PAGE 1	SEE P 1	EFFECTIVE DATE: SEE PAGE 1

ADDITIONAL REMARKS
THIS ADDITIONAL REMARKS FORM IS A SCHEDULE TO ACORD FORM,
FORM NUMBER: ACORD 25 FORM TITLE: Certificate of Liability Insurance

Named Insureds Continued
SBA GC Holdings, LLC
Limited
SBA Edge (JAX), LLC
Towers SRL
SBA UK Holdings Limited
SBA GC Towers, LLC
SBA Guarantor LLC
Brazil Shareholder I, LLC
Brazil Shareholder II, LLC
Central America Equityholder, LLC
Chile Shareholder, LLC
Colombia Shareholder, LLC
Costa Rica Quotaholder, LLC
SBA Monarch Steel, LLC
Desarrollos Inmobiliarios Inmoavilies S.A.
Ecuador Shareholder, LLC
Ecuador Shareholder II, LLC SBA Network Management, Inc.
El Salvador Shareholder I, LLC
EI Salvador Shareholder II, LLC
Guatemala Shareholder I, LLC
Guatemala Shareholder II, LLC
SBA Senior Finance II LLC
SBA Senior Finance, LLC
SBA Site Management, LLC
Memphis Towers, LLC
SBA Steel LLC
SBA Steel II, LLC
Nicaragua Shareholder I, LLC
Nicaragua Shareholder III, LLC
OFO LLC
Panama Shareholder, LLC
Peru Shareholder I, LLC
Peru Shareholder II, LLC
Quality Tower Developers, LLC
SBA Torres Costa Rica, Limitada
SBA 2012 TC Assets, LLC
SBA 2012 TC Assets Land, LLC
SBA 2012 TC Assets PR, LLC
SBA 2012 TC Holdings, LLC
SBA 2012 TC Land II, LLC
SBA 2014 PR, Inc. f/k/a Soluwise, Inc.
SBA BTS, LLC
SBA Canada Holdings, Inc.
SBA Canada, ULC (fka Jade Tower ULC)
SBA Canada II, ULC
SBA DAS \& Small Cells, LLC
SBA Depositor LLC
SBA Towers South Africa Proprietary, Limithed F/K/A Atlas Tower Proprietary,
SBA GC Parent I, LLC SBA Torres Argentina SRL f/k/a Southern
SBA GC Parent II, LLC T.A. Investment Holdings Inc.
SBA Towers USVI, Inc. Torres Andinas Holdco, Inc.
SBA Towers X, LLC Tower Funding, LLC
SBA Holdings LLC
SBA Holdings e Participações Ltds.
SBA HQ, LLC
SBA Infrastructure, LLC
SBA Inmuebles Peru, S.A.C. fka MAA Golden State Licensing, LLC.
SBA Land, LLC fka TCO Land LLC SBA Towers VII, LLC
Desarrollos Inmobiliarios Inmo Aplicanet SA

SBA 2016 TC USVI, LLC f/k/a TowerCo 2013 USVI LLC SBA Torres Peru, S.A. fka Torres Andinas, S.A.
SBA Towers II LLC
SBA Monarch Towers I, LLC
SBA Monarch Towers III, LLC
SBA Negocios Imobiliarios Ltda
SBA Connect, LLC
SBA New Builds, LLC
SBA Properties, LLC
SBA Puerto Rico, LLC
SBA RSA Holdings, LLC
SBA TRS Holdco, LLC
SBA Ventures, LLC
SBA Network Services, LLC
SBA Sites, LLC
SBA Worth Telecom LLC
Torreaviles S.A
SBA Structures, LLC
SBA Telecommunications, LLC.
SBA Telecomunicaciones Colombia S.A.S. f/k/a/ Torres Andinas S.A.S.
SBA Towers, LLC
SBA Torres Brasil, Limitada
SBA Torres Chile, Spa
SBA Torres Colombia S.A.S
SBA Towers VIII, LLC
SBA Torres Ecuador SBAEC, S.A.
SBA Torres El Salvador, S.A. De C.V.
SBA Torres Guatemala, Limitada
SBA Torres Nicaragua, S.A.
SBA Torres Nicaragua II, LLC
SBA Torres Panama, S.A.

SBA Towers III LLC
SBA Towers IV, LLC
SBA Towers IX, LLC
SBA Towers V, LLC
Desarrollos Inmobiliarios Ecuador SBAINMO-EC S.A.

The Commonwealth of Massachusetts

Department of Industrial Accidents

1 Congress Street, Suite 100 Boston, MA 02114-2017
www.mass.gov/dia
Workers' Compensation Insurance Affidavit: General Businesses.
TO BE FILED WITH THE PERMITTING AUTHORITY.

Applicant Information

Please Print Legibly
Business/Organization Name: SBA Communications Corporation
Address: 8051 Congress Avenue

City/State/Zip: Boca Raton, FL 33487
Are you an employer? Check the appropriate box:

1. I am a employer with 750 employees (full and/ or part-time).*
2. $\square \mathrm{I}$ am a sole proprietor or partnership and have no employees working for me in any capacity. [No workers' comp. insurance required]
3. \square We are a corporation and its officers have exercised their right of exemption per c. 152, §1(4), and we have no employees. [No workers' comp. insurance required]*
4. \square We are a non-profit organization, staffed by volunteers, with no employees. [No workers' comp. insurance req.]

Phone \#: 508-251-0720 x3800

```
Business Type (required):
5. \(\square\) Retail
6. \(\square\) Restaurant/Bar/Eating Establishment
7. \(\square\) Office and/or Sales (incl. real estate, auto, etc.)
8. \(\square\) Non-profit
9. \(\square\) Entertainment
10. \(\square\) Manufacturing
11. \(\square\) Health Care
12. Other Telecommunications
```

*Any applicant that checks box \#1 must also fill out the section below showing their workers' compensation policy information.
${ }^{* *}$ If the corporate officers have exempted themselves, but the corporation has other employees, a workers' compensation policy is required and such an organization should check box \#1.
I am an employer that is providing workers' compensation insurance for my employees. Below is the policy information. Insurance Company Name: Henderson Bros., Inc./Charter Oak Fire Ins. Co + Travelers Property \& Casualty
Insurer's Address: Henderson Bros., Inc: 920 Ft. Duquesne Blvd.
City/State/Zip: Pittsburgh, PA 15222
Policy \# or Self-ins. Lic. \# UB-4L099102/UB-3L884966
Expiration Date: 03/15/2024
Attach a copy of the workers' compensation policy declaration page (showing the policy number and expiration date).
Failure to secure coverage as required under Section 25A of MGL c. 152 can lead to the imposition of criminal penalties of a fine up to $\$ 1,500.00$ and/or one-year imprisonment, as well as civil penalties in the form of a STOP WORK ORDER and a fine of up to $\$ 250.00$ a day against the violator. Be advised that a copy of this statement may be forwarded to the Office of Investigations of the DIA for insurance coverage verification.

I do hereby certify, under the pains and penalties of perjury that the information provided above is true and correct.

Signature:

\qquad
Phone \#: 508-251-0720 x 3801

Official use only. Do not write in this area, to be completed by city or town official.

City or Town: Permit/License \#
Issuing Authority (circle one):

1. Board of Health 2. Building Department 3. City/Town Clerk 4. Licensing Board 5. Selectmen’s Office
2. Other

Contact Person:
Phone \#:

ELIGIBLE FACILITIES REQUEST (EFR) APPLICATION FORM

Orig. Date of Submittal: 9/19/23

Submitted by:

Name: Catherine Ware
Title: Site Development Specialist on behalf of SBA Network Services and DISH Wireless Contact Information: cware@sbasite.com (917)868-8365

Name of Jurisdiction: Town of Truro
Address of Jurisdiction: 24 Town Hall Road
Contact Name for Jurisdiction: Elizabeth Sturdy
Name of Local Government Permit Application: Planning Application for Special Permit

Local Government File \#: Click here to enter text.

Street Address of Site: 5 Town Dump Rd
Tax Parcel \# of Site: 55-2-A

Latitude/Longitude of Site: 41.98578; -70.04133

List Each Piece of Transmission Equipment that will be Collocated or Added:
(3) JMA Wireless Antenas, (6) RRU/RRH Fujitsu, (1) Raycap OVP

List Each Piece of Transmission Equipment that will be Removed:
N/A

List Cabinets that will be Collocated or Added at the Site:
None

List Cabinets that will be Removed at the Site:
None

Permit Application Amount: \$350

Municipal Consultant Review Fee Deposit: Click here to enter text.

ELIGIBLE FACILITIES REQUEST (EFR) CERTIFICATION OF NON-SUBSTANTIAL

 CHANGES TO A WIRELESS TOWER NOT LOCATED WITHIN A PUBLIC RIGHT OF WAY1) Address of the Wireless Tower: 5 Town Dump Road, Truro MA. 02666
2) The height (measured in feet above ground level) of the existing Tower as originally approved, including any modifications approved prior to February 22, 2012: 190
3) What is the height (measured in feet above ground level) at which the modifications to the Transmission Equipment will occur on the Tower? 155'
4) What will be the height (measured in feet above ground level) of the existing Tower after the modifications to the Transmission Equipment are installed? 190'
5) Effect of modifications of Transmission Equipment on Tower height:
a. Will the modifications in Transmission Equipment (addition, removal or replacement of Transmission Equipment) result in increasing the height above ground level of the existing Tower?X No
b. Will the modifications in Transmission Equipment result in increasing the height above ground level of the existing Tower by more than: (i) 10% of the height of the existing Tower, as originally approved, including any modifications approved prior to February 22, 2012; or (ii) twenty feet above the height of the existing Tower, as originally approved, including any modifications approved prior to February 22, 2012, whichever height increase is greater?Yes \boxtimes No
6) Will the modifications in Transmission Equipment (measured at the height above ground level where the Transmission Equipment will be attached to the tower) result in any Transmission Equipment protruding horizontally from the edge of tower by more than twenty (20) feet or by more than the existing width of the tower at that height, whichever of these dimensions is greater?Yes \boxtimes No
7) Will the proposed changes in Transmission Equipment involve excavation or placement of new equipment outside the existing Tower site or outside any access or utility easements currently related to the site?Yes
8) Will the proposed modification in Transmission Equipment involve installation of more than the standard number of new equipment cabinets for the technology involved, but not to exceed four?YesNo
9) Will the proposed modification in Transmission Equipment defeat the existing concealment elements of the Tower?YesNo
10) Prior Conditions of Approval
a. Will the proposed modification in Transmission Equipment comply with conditions of approval imposed on the Tower prior to February 22, 2012?
\boxtimes YesNo
b. If the answer to $10(\mathrm{a})$ is "No," is the non-compliance due solely to any of the conditions addressed in questions 5-9 above?YesNo

If the answer to either question 5(a) or 5(b) is "No," and the answers to questions 6-9 are "No," and the answer to either 10(a) or 10(b) is "Yes," then the proposed modifications do not substantially change the physical dimensions of the existing Tower. Click here to enter text.

This certification is dated this 9/19/ 2023

Signature Catherine Ware

Catherine Ware / Site Development Specialist on behalf of SBA Network Services LLC and DISH Wireless

Name \& Title

Eligible Facilities Request to Modify Transmission Equipment at an Existing Communications Tower

Location: 5 Town Dump Rd, Truro Ma
DISH Site No: BOBOS00593A
SBA Communications: Agent for SBA Network Services LLC and DISH Wireless

DISH Wireless is Filing an Eligible Facilities Request

SBA Properties, LLC, on behalf of DISH Wireless and SBA Network Services, LLC as General Contractor, is submitting an Eligible Facilities Request to add (collocate) Transmission Equipment on an existing SBA Telecommunications Tower located at 5 Town Dump Rd.

The existing Tower is a structure that is 190^{\prime} high and presently contains wireless facilities. The existing Tower meets the Federal Communications Commission ("FCC") definition of a Tower and DISH Wireless is an FCC licensed wireless carrier.

The list of equipment identified in this Eligible Facilities Request application is Transmission Equipment as determined by the FCC, and as defined as follows: "any equipment that facilitates transmission for any Commission-licensed or authorized wireless communication service, including, but not limited to, radio transceivers, antennas and other relevant equipment associated with and necessary to their operation, including coaxial or fiber-optic cable, and regular and back-up power supply. This definition includes equipment used in any technological configuration associated with any Commission-authorized wireless transmission, licensed or unlicensed, terrestrial or satellite, including commercial mobile, private mobile, broadcast and public safety services, as well as fixed wireless services such as microwave backhaul or fixed broadband."

Administrative Review and Approval

While local jurisdictions retain discretionary zoning review over the construction of new towers, collocations and/or equipment upgrades such as reflected in this application must now be approved administratively. The new law provides, in part, that:
> "a State or local government may not deny, and shall approve, any eligible facilities request for a modification of an existing wireless tower or base station that does not substantially change the physical dimensions of such tower or base station." (Emphasis added.)

The FCC, in a Report and Order adopted on October 17, 2014, determined that any modification to an existing telecommunications Tower that meets the following six criteria does not substantially change the physical dimensions of the existing Tower and therefore is an Eligible Facilities Request which must be granted:

1. The modifications to the Transmission Equipment do not increase the height of the Tower by twenty feet or ten percent, whichever is greater;
2. The modifications to the Transmission Equipment do not protrude from the edge of the Tower by twenty feet or more than the width of the Tower (whichever of these two dimensions is greater) at the level where the transmission equipment modifications are made;
3. The modifications to the Transmission Equipment do not involve the installation of more than the standard number of equipment cabinets for the technology involved, not to exceed four;
4. The modifications to the Transmission Equipment do not entail any excavation or deployment outside of the Tower site;
5. The modifications to the Transmission Equipment do not defeat any existing concealment elements of the Tower;
6. The modifications to the Transmission Equipment comply with prior conditions of approval of the Tower, unless the non-compliance is due to an increase in height, increase in width, addition of equipment cabinets, or new excavation that does not exceed the corresponding "substantial change" thresholds in numbers 1-4.

We are providing certification that each of the six review criteria identified by the FCC will be met, and that the proposed collocation fully conforms to Section 6409(a) as enacted by Congress and as interpreted by the FCC.

Expedited Permit Processing and Deemed Granted Designation

Under federal law, an Eligible Facilities Request is deemed granted sixty (60) days after a complete application is filed with a local jurisdiction. Accordingly, this Eligible Facilities Request must be approved within 60 days, as required by federal law and FCC regulations. If sixty days pass after the submission of DISH's application and the Truro Planning Board has not acted to grant or deny the request, it will be deemed granted.

Tower Engineering Solutions
Phone (972) 483-0607, Fax (972) 975-9615
1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 190 ft Cellxion Self Supporting Tower
Customer Name: SBA Communications Corp
Customer Site Number: MA12227-A
Customer Site Name: Truro
Carrier Name: Dish Wireless (App\#: 163468, V1)
Carrier Site ID / Name: BOBOS00593A / 0
Site Location: 5 Town Dump Road

Truro, Massachusetts
Exp.06/30/2024
Barnstable County
Latitude: 41.985783
Longitude: -70.041333

Analysis Result:
10/26/2023

Max Structural Usage: 104.8\% [Pass]
Max Foundation Usage: 68.0\% [Pass]
Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By: Sital Shrestha

Tower Engineering Solutions
Phone (972) 483-0607, Fax (972) 975-9615
1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 190 ft Cellxion Self Supporting Tower
Customer Name: SBA Communications Corp
Customer Site Number: MA12227-A
Customer Site Name: Truro
Carrier Name: Dish Wireless (App\#: 163468, V1)
Carrier Site ID / Name: BOBOS00593A / 0
Site Location: 5 Town Dump Road
Truro, Massachusetts
Barnstable County
Latitude: 41.985783
Longitude: -70.041333

Analysis Result:
 Max Structural Usage: 104.8\% [Pass]
 Max Foundation Usage: 68.0\% [Pass]
 Additional Usage Caused by New Mount/Mount Modification: N/A

Report Prepared By: Sital Shrestha

Introduction

The purpose of this report is to summarize the analysis results on the 190 ft Cellxion Self Supporting Tower to support the proposed antennas and transmission lines in addition to those currently installed. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Tower Drawings	Cellxion Drawing \# TBAY01793, dated 01/13/2004
Foundation Drawing	Cellxion Drawing \# TBAY01793, dated 01/13/2004
Geotechnical Report	Paul B. Aldinger \& Associates Project \# 03135, dated 11/19/2003

Analysis Criteria

The rigorous analysis was performed in accordance with the requirements and stipulations of the TIA-222-G-2. In accordance with this standard, the structure was analyzed using TESTowers, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis:	Ultimate Design Wind Speed $V_{\text {ult }}=149.0 \mathrm{mph}$ (3-Sec. Gust)/ Nominal Design Wind Speed $V_{\text {asd }}=115.0 \mathrm{mph}(3-S e c$. Gust)
Wind Speed with Ice:	50 mph ($3-\mathrm{Sec}$. Gust) with $3 / 4^{\prime \prime}$ radial ice concurrent
Operational Wind Speed:	$60 \mathrm{mph}+0^{\prime \prime}$ Radial ice
Standard/Codes:	TIA-222-G-2 /2015 IBC/ Massachusetts State Building Code,
	Ninth Edition
Exposure Category:	B
Structure Class:	III
Topographic Category:	1
Crest Height:	0 ft
Seismic Parameters:	$\mathrm{S}_{\mathrm{S}}=0.164, \mathrm{~S}_{1}=0.057$

This structural analysis is based upon the tower being classified as a Structure Class III; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type \& Qty.	Transmission Lines	Owner
1	187.3	3	KMW - AM-X-CD-16-65-00T-RET - Panel	(3) Sector Frames (Site Pro USF12-XX-U) + (3) Pipe Mounts	(12) $15 / 8^{\prime \prime}$ (2) $7 / 16^{\prime \prime}$ Fiber (Inside (2) 3" Conduits)]	AT\&T
2		3	Cci - DMP5R-BU4DA - Panel			
3		3	Css - DU01417-8686-0 - Panel			
4		3	Kathrein - 800-10121-Panel			
5		6	Powerwave-LGP17201-TMA			
6		3	Ericsson - RRUS 12 B4 - RRU			
7		3	Ericsson - RRUS 4478 B14-RRU			
8		3	Ericsson - RRUS 4449 B5/B12-RRU			
9		2	Raycap - DC6-48-60-18-8F - OVP			
10	175.0	3	Ericsson - AIR 21 B2A/B4P - Panel	(3) VFA12-HD	(4) $15 / 8^{\prime \prime}$ (1) 1-1/4" Fiber (1) 1.9 " Fiber (3) $7 / 8$ " Hybrid	T-Mobile
11		3	Ericsson - AIR 21 B4A/B2P - Panel			
12		3	Ericsson - 840590966 - Panel			
13		3	Ericsson KRY 112 144/1			
14		3	Ericsson 4480 B71 + B85			
13	165.0	3	Swedcom - SWCP 2X7014 - Panel	(3) Modified Sector Frames with (3) BSAMNT-SBS-1-2, (3) VZWSMART-P40238X150, (12) VZWSMART-MSK1, (3) VZWSMART-SFK1 and (3) VZWSMART-SFK3	(1) $15 / 8^{\prime \prime}$ Hybrid (1) W/G Ladder	Verizon
14		6	CommScope - NHH-65B-R2B - Panel			
15		3	Samsung - MT6407-77A - Panel			
16		3	B2/B66A RRH-BR049 (RFV01U-D1A)			
17		3	B5/B13 RRH-BR04C (RFV01U-D2A)			
18		1	Raycap RVZDC-6627-PF-48- OVP			
23	138.0	3	RFS - APXVTM14-C-I20-Panel	(3) T-Frame	(3) $11 / 4^{\prime \prime}$ (1) $5 / 8^{\prime \prime}$ Fiber	Sprint Nextel
24		3	RFS - APXVSPP18 - Panel			
25		3	ALU - 2500 MHz - RRU			
26		3	ALU - 1900 MHz - RRU			
27		3	ALU -800 MHz - RRU			
28		3	ALU -800MHz Filter			
29		4	RFS - ACU-A20-N - RET			

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type \& Qty.	Transmission Lines	Owner
19	155.0	3	JMA Wireless MX08FRO665-21 Panel	(3) Commscope MTC3975083 (Sector frames)	(1) $1.75^{\prime \prime}$ Hybrid	Dish Wireless
20		3	Fujitsu TA08025-B605 RRU			
21		3	Fujitsu TA08025-B604 RRU			
22		1	Raycap RDIDC-9181-PF-48 OVP			

See the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

Tower Component	Legs	Diagonals	Horizontals
Max. Usage:	$\mathbf{7 0 . 1 \%}$	$\mathbf{1 0 4 . 8 \%}$	$\mathbf{4 . 8 \%}$
Pass/Fail	Pass	Pass	Pass

Foundations

	Compression (Kips)	Uplift (Kips)	Shear (Kips)
Analysis Reactions	528.2	453.0	51.1

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Operational Condition (Rigidity):

Operational characteristics of the tower are found to be within the limits prescribed by TIA-222 for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 0.0785 degrees under the operational wind speed as specified in the Analysis Criteria.

Conclusions

Based on the analysis results, the existing structure and its foundation were found to be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the TIA222 Standard under the design basic wind speed as specified in the Analysis Criteria.

Standard Conditions

1. This analysis was performed based on the information supplied to (TES) Tower Engineering Solutions, LLC. Verification of the information provided was not included in the Scope of Work for TES. The accuracy of the analysis is dependent on the accuracy of the information provided.
2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of TES. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the ANSI/TIA-222 standard or other codes, TES should be notified in writing and the applicable minimum values provided by the client.
4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. TES has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, TES should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

Site Name:	Truro			Code: TIA-222-G	$10 / 26 / 2023$	$(()\|l\|))$	
Type:	Self Support	Base Shape:	Triangle	Basic WS:	115.00		
Height:	$190.00(\mathrm{ft})$	Base Width:	22.50	Basic Ice WS:	50.00		
Base Elev:	$0.00(\mathrm{ft})$	Top Width:	5.41	Operational Ws:	60.00	Page: 1	Tower Engineering Solutions

Site Name:	Truro			Code: TIA-222-G	$10 / 26 / 2023$	$((\mathrm{CH} / \mathrm{I}))$	
Type:	Self Support	Base Shape:	Triangle	Basic WS:	115.00		
Height:	$190.00(\mathrm{ft})$	Base Width:	22.50	Basic Ice WS:	50.00		
Base Elev:	$0.00(\mathrm{ft})$	Top Width:	5.41	Operational Ws:	60.00	Page: 2	Tower Enginering Solutions

Structure: MA12227-A-SBA

Site Name:	Truro			Code: TIA-222-G		10/26/2023	(1)
Type:	Self Support	Base Shape:	Triangle	Basic WS:	115.00		
Height:	190.00 (ft)	Base Width:	22.50	Basic Ice WS:	50.00		
Base Elev:	0.00 (ft)	Top Width:	5.41	Operational WS:	60.00	Page: 3	Tower Enginering Solutions

Type: Self Support
Site Name: Truro
Height: 190.00 (ft)
Page: 4

(1) $15 / 8$ " Hybrid 0 To 165 Verizon

Structure:	MA12227-A-SBA	Code:	TIA-222-G	10/26/2023	
Site Name:	Truro		Exposure:	B	
Height:	$190.00(\mathrm{ft})$		Crest Height:	0.00	
Base Elev:	$0.000(\mathrm{ft})$		Site Class:	D-Stiff Soil	
Gh:	0.85	Topography:	1	Struct Class:	III
Dill					

Discrete Appurtenances Properties

		No Ice		Ice		Len (in)	Width (in)	Depth (in)	Ka	Orientation Factor	Vert Ecc (ft)
Attach Elev (ft)	Qty	Weight (lb)	CaAa (sf)	Weight (lb)	CaAa (sf)						
190.00 Lightning Rod	1	5.00	0.500	31.73	2.728	72.000	1.000	1.000	1.00	1.00	0.000
187.30 (3) USF12-496-U	1	1598.0	34.800	4445.96	81.316	0.000	0.000	0.000	0.75	1.00	0.000
187.30 AM-X-CD-16-65-00T-RET	3	48.50	7.080	255.65	10.228	72.000	11.800	5.900	0.80	0.75	0.000
187.30 Cci-DMP5R-BU4DA	3	20.30	8.280	280.17	9.844	48.000	20.700	7.700	0.80	0.85	0.000
187.30 DUO1417-8686-0	3	20.30	5.640	222.59	6.912	48.400	14.000	9.000	0.80	0.82	0.000
187.3080010121	3	46.30	4.680	192.93	7.124	54.500	10.300	5.900	0.80	0.79	0.000
187.30 LGP17201	6	31.00	1.950	79.78	3.222	13.900	14.400	3.700	0.80	0.50	0.000
187.30 RRUS 12	3	60.00	2.700	145.55	3.542	18.200	17.800	8.000	0.80	0.50	0.000
187.30 RRUS 4478 B14	3	59.40	1.650	112.33	2.312	15.000	13.200	7.300	0.80	0.50	0.000
187.304449 B5/B12	3	71.00	1.970	139.14	2.669	17.900	13.200	9.400	0.80	0.50	0.000
187.30 DC6-48-60-18-8F	2	31.80	0.920	110.72	1.479	24.000	11.000	11.000	1.00	1.00	0.000
175.00 AIR 21 B2A/B4P	3	91.50	5.650	316.41	7.503	56.000	12.100	7.900	0.80	0.86	0.000
175.00 AIR 21 B4A/B2P	3	90.30	5.650	315.21	7.503	56.000	12.100	7.900	0.80	0.86	0.000
175.00840590966	3	101.40	18.780	628.26	22.292	95.900	23.500	7.100	0.80	0.69	0.000
175.00 Ericsson KRY 112 144/1	3	11.00	0.410	24.65	1.011	6.900	6.100	2.700	0.80	0.67	0.000
175.00 Ericsson $4480 \mathrm{B71}+\mathrm{B85}$	3	93.00	2.850	184.05	3.704	21.800	15.700	7.500	0.80	0.50	0.000
175.00 VFA12-HD	3	774.00	18.400	1731.47	47.665	0.000	0.000	0.000	0.75	0.75	0.000
165.00 Sector Frame	3	500.00	15.500	1383.60	31.113	0.000	0.000	0.000	0.75	0.75	0.000
165.00 SWCP 2X7014	3	30.00	9.940	397.80	11.746	76.700	14.000	11.300	0.80	0.93	0.000
165.00 NHH-65B-R2B	6	43.70	7.140	312.02	9.745	72.000	11.900	7.100	0.80	0.83	0.000
165.00 MT6407-77A	3	79.40	4.690	239.29	5.904	35.100	16.100	5.500	0.80	0.70	0.000
165.00 B2/B66A RRH-BR049	3	84.40	1.880	149.28	2.578	15.000	15.000	10.000	0.80	0.50	0.000
165.00 B5/B13 RRH-BR04C (RFV01U-D2A)	3	70.30	1.880	131.86	2.578	15.000	15.000	8.100	0.80	0.50	0.000
165.00 Raycap RVZDC-6627-PF-48	1	32.00	4.060	176.20	5.100	29.500	16.500	12.600	0.80	0.67	0.000
165.00 (3) V-Braces	1	230.00	6.700	636.46	15.580	0.000	0.000	0.000	0.75	1.00	0.000
165.00 (3) Stabilizer Kit	1	180.00	6.100	466.29	14.185	0.000	0.000	0.000	0.75	1.00	0.000
165.00 Handrail Kit	1	261.72	6.750	654.85	15.100	0.000	0.000	0.000	0.75	1.00	0.000
155.00 MX08FRO665-21	3	64.50	12.100	428.09	13.874	72.000	20.000	8.000	0.80	0.74	0.000
155.00 (3) MTC3975083	1	1056.4	29.450	2346.97	75.707	0.000	0.000	0.000	0.75	1.00	0.000
155.00 TA08025-B605	3	75.00	1.960	140.38	2.661	15.800	15.000	9.100	0.80	0.50	0.000
155.00 TA08025-B604	3	63.90	1.960	127.19	2.661	15.800	15.000	7.900	0.80	0.50	0.000
155.00 RDIDC-9181-PF-48	1	21.85	2.010	88.26	2.720	16.570	14.570	8.460	1.00	1.00	0.000
138.00 T-Arm (Flat)	3	400.00	10.000	744.08	20.753	0.000	0.000	0.000	0.75	0.75	0.000
138.00 APXVTM14-C-I20	3	56.20	5.910	251.17	7.186	56.300	12.600	6.300	0.80	0.77	0.000
138.00 APXVSPP18-C	3	57.00	7.080	269.99	10.119	72.000	11.800	7.000	0.80	0.83	0.000
138.00 1900MHz RRH	3	44.00	2.500	178.52	3.627	23.000	13.000	17.000	0.80	0.50	0.000
138.00 1900MHz RRH	3	44.00	2.500	178.52	3.627	23.000	13.000	17.000	0.80	0.50	0.000
138.00800 MHz RRH	3	53.00	2.130	144.14	3.336	19.700	13.000	10.800	0.80	0.50	0.000
138.00 ALU 800MHz External Notch Filt	3	8.80	0.780	30.54	1.577	10.000	8.000	3.000	0.80	0.50	0.000
138.00 ACU-A20-N	4	1.00	0.140	6.29	0.506	4.000	2.000	3.500	0.80	0.50	0.000

Totals:
110 13,253.28
39,472.65
Number of Appurtenances:
40

Loading Summary

Structure:	MA12227-A-SBA		Code:	TIA-222-G	10/26/2023
Site Name:	Truro		Exposure:	B	
Height:	$190.00(\mathrm{ft})$		Crest Height:	0.00	
Base Elev:	$0.000(\mathrm{ft})$		Site Class:	D - Stiff Soil	
Gh:	0.85	Topography:	1	Struct Class:	III

Linear Appurtenances Properties

$\left.\begin{array}{ccccccccccc}\begin{array}{c}\text { Elev. } \\ \text { From } \\ \text { (ft) }\end{array} & \begin{array}{c}\text { Elev. } \\ \text { To } \\ \text { (ft) }\end{array} & \text { Description } & \text { Qty } & \begin{array}{c}\text { Width } \\ \text { (in) }\end{array} & \begin{array}{c}\text { Weight } \\ \text { (Ib/ft) }\end{array} & \begin{array}{c}\text { Pct } \\ \text { In } \\ \text { Block }\end{array} & \begin{array}{c}\text { Spread } \\ \text { On } \\ \text { Faces }\end{array} & \begin{array}{c}\text { Bundling } \\ \text { Arrangement }\end{array} & \begin{array}{c}\text { Cluster } \\ \text { Dia } \\ \text { (in) }\end{array} & \begin{array}{c}\text { Out } \\ \text { of } \\ \text { Zone }\end{array} \\ \hline 0.00 & 187.30 & 15 / 8 \text { Spacing Coax } & \text { (in) }\end{array} \begin{array}{c}\text { Orientation } \\ \text { Factor }\end{array} \quad \begin{array}{c}\text { Ka } \\ \text { Override }\end{array}\right]$

Structure: Site Name Height: Base Elev: Gh:		MA12227 Truro 190.00 (ft) 0.000 (ft) 0.85	7-A-SBA	Topography: 1				Code: Exposure: Crest Height: Site Class: Struct Class:			TIA-222-G B 0.00 D - Stiff Soil III		10/26/2023 Page: 7			$\underbrace{(((1) \mid))}_{\text {Tower Engineering Solutions }}$	
Load Case: $1.2 \mathrm{D}+1.6 \mathrm{~W}$ Wind Load Factor: Dead Load Factor: Ice Dead Load Factor:				$\begin{array}{r} \hline \text { mal W } \\ 1.60 \\ 1.20 \\ 0.00 \end{array}$							$1.2 \mathrm{D}+1.6 \mathrm{~W} 115 \mathrm{mph}$ Wind at Normal To Face Wind Importance Factor: 1.15 Ice Importance Factor: 1.25						
$\begin{aligned} & \text { Sect } \\ & \text { Seq } \end{aligned}$	Wind Height (ft)	Total Flat qz Area (psf) (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Ice Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (Ib)	Struct Force (lb)	Linear Force (Ib)	Total Force (lb)
1	10.0	23.1744 .336	17.52	0.00	0.14	2.81	1.00	1.00	0.00	53.17	105.94	0.00	10,028.		4702.34	2519.62	7,221.95
2	30.0	23.1940 .911	17.52	0.00	0.14	2.79	1.00	1.00	0.00	49.76	105.94	0.00	9,784.7		4381.05	2521.74	6,902.79
3	50.0	26.8337 .553	16.69	0.00	0.15	2.78	1.00	1.00	0.00	45.90	105.94	0.00	9,049.0		4658.98	2918.01	7,576.99
4	70.0	29.5429 .932	16.69	0.00	0.14	2.81	1.00	1.00	0.00	38.07	105.94	0.00	8,507.3		4293.46	3212.46	7,505.92
5	90.0	31.7327 .076	15.85	0.00	0.15	2.79	1.00	1.00	0.00	34.89	105.94	0.00	7,831.3		4200.37	3451.61	7,651.98
6	110.0	33.6126 .395	14.19	0.00	0.16	2.75	1.00	1.00	0.00	33.68	105.94	0.00	6,424.1		4228.70	3655.29	7,883.99
7	130.0	35.2519 .279	13.35	0.00	0.15	2.78	1.00	1.00	0.00	26.20	106.39	0.00	5,964.4		3496.91	3943.21	7,440.12
8	150.0	36.7216 .640	12.52	0.00	0.16	2.75	1.00	1.00	0.00	23.26	94.75	0.00	4,908.5		3191.86	3616.98	6,808.84
9	170.0	38.0614 .129	11.68	0.00	0.17	2.69	1.00	1.00	0.00	20.45	82.58	0.00	4,177.8		2849.36	3214.22	6,063.58
10	185.0	38.997 .341	5.01	0.00	0.20	2.59	1.00	1.00	0.00	10.19	24.06	0.00	1,542.3		1398.52	940.61	2,339.13
													68,218.1				67,395.30

Load Case: $1.2 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$						$1.2 \mathrm{D}+1.6 \mathrm{~W} 115 \mathrm{mph}$ Wind at 60° From Face												
	Wind Load Factor: Dead Load Factor: Ice Dead Load Factor:														Wind Importance Factor: Ice Importance Factor:			$\begin{aligned} & 1.15 \\ & 1.25 \end{aligned}$
					. 20													
					0.00													
Sect Seq	Wind Height (ft)	$\begin{gathered} \text { qz } \\ \text { (psf) } \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Ice Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (Ib)
1	10.0	23.17	44.336	17.52	0.00	0.14	2.81	0.80	1.00	0.00	44.30	105.94	0.00	10,028.		3918.07	2519.62	6,437.68
2	30.0	23.19	40.911	17.52	0.00	0.14	2.79	0.80	1.00	0.00	41.58	105.94	0.00	9,784.7		3660.62	2521.74	6,182.37
3	50.0	26.83	37.553	16.69	0.00	0.15	2.78	0.80	1.00	0.00	38.39	105.94	0.00	9,049.0		3896.71	2918.01	6,814.72
4	70.0	29.54	29.932	16.69	0.00	0.14	2.81	0.80	1.00	0.00	32.08	105.94	0.00	8,507.3		3618.33	3212.46	6,830.78
5	90.0	31.73	27.076	15.85	0.00	0.15	2.79	0.80	1.00	0.00	29.47	105.94	0.00	7,831.3		3548.36	3451.61	6,999.96
6	110.0	33.61	26.395	14.19	0.00	0.16	2.75	0.80	1.00	0.00	28.40	105.94	0.00	6,424.1		3565.85	3655.29	7,221.14
7	130.0	35.25	19.279	13.35	0.00	0.15	2.78	0.80	1.00	0.00	22.34	106.39	0.00	5,964.4	0.0	2982.24	3943.21	6,925.45
8	150.0	36.72	16.640	12.52	0.00	0.16	2.75	0.80	1.00	0.00	19.93	94.75	0.00	4,908.5		2735.20	3616.98	6,352.17
9	170.0	38.06	14.129	11.68	0.00	0.17	2.69	0.80	1.00	0.00	17.63	82.58	0.00	4,177.8		2455.71	3214.22	5,669.94
10	185.0	38.99	7.341	5.01	0.00	0.20	2.59	0.80	1.00	0.00	8.72	24.06	0.00	1,542.3		1197.02	940.61	2,137.63
														68,218.1				61,571.85

Structure: Site Name: Height: Base Elev: Gh:		MA12227- Truro 190.00 (ft) 0.000 (ft) 0.85		Topography:			Code: Exposure: Crest Height: Site Class: Struct Class:				TIA-222-G B 0.00 D - Stiff Soil III		10/26/2023			$\\|_{\text {En }}$ Tower Engineering Solutions	
Load Case: $1.2 \mathrm{D}+1.6 \mathrm{~W}$ Wind Load Factor: Dead Load Factor: Ice Dead Load Factor:				Wind 1.60 1.20 0.00							1.2D + 1.6W 115 mph Wind at 90° From Face Wind Importance Factor: 1.15 Ice Importance Factor: 1.25						
Sect Seq	Wind Height (ft)	Total Flat qz Area (psf) (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Ice Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (Ib)	Weight Ice (lb)	Struct Force (Ib)	Linear Force (lb)	Total Force (lb)
1	10.0	23.1744 .336	17.52	0.00	0.14	2.81	0.85	1.00	0.00	46.52	105.94	0.00	10,028.		4114.13	2519.62	6,633.75
2	30.0	23.1940 .911	17.52	0.00	0.14	2.79	0.85	1.00	0.00	43.62	105.94	0.00	9,784.7		3840.73	2521.74	6,362.47
3	50.0	26.8337 .553	16.69	0.00	0.15	2.78	0.85	1.00	0.00	40.27	105.94	0.00	9,049.0		4087.28	2918.01	7,005.28
4	70.0	29.5429 .932	16.69	0.00	0.14	2.81	0.85	1.00	0.00	33.58	105.94	0.00	8,507.3		3787.11	3212.46	6,999.57
5	90.0	31.7327 .076	15.85	0.00	0.15	2.79	0.85	1.00	0.00	30.82	105.94	0.00	7,831.3		3711.36	3451.61	7,162.97
6	110.0	33.6126 .395	14.19	0.00	0.16	2.75	0.85	1.00	0.00	29.72	105.94	0.00	6,424.1		3731.56	3655.29	7,386.85
7	130.0	35.2519 .279	13.35	0.00	0.15	2.78	0.85	1.00	0.00	23.31	106.39	0.00	5,964.4	0.0	3110.91	3943.21	7,054.12
8	150.0	36.7216 .640	12.52	0.00	0.16	2.75	0.85	1.00	0.00	20.77	94.75	0.00	4,908.5		2849.36	3616.98	6,466.34
9	170.0	38.0614 .129	11.68	0.00	0.17	2.69	0.85	1.00	0.00	18.34	82.58	0.00	4,177.8		2554.12	3214.22	5,768.35
10	185.0	38.997 .341	5.01	0.00	0.20	2.59	0.85	1.00	0.00	9.09	24.06	0.00	1,542.3		1247.40	940.61	2,188.01
													68,218.1				63,027.71

Structure: Site Name: Height: Base Elev: Gh:		MA12227 Truro 190.00 (fi) 0.000 (ft) 0.85	$\overline{A-S B A}$	Topography: 1				Code: Exposure: Crest Height: Site Class: Struct Class:			TIA-222-G B 0.00 D - Stiff Soil III		10/26/2023			$\left(\left(O_{\text {Tower Engineering Solutions }}^{(1))}\right.\right.$	
Load Case: $\quad 0.9 \mathrm{D}+1.6 \mathrm{~W} 6$ Wind Load Factor: Dead Load Factor: Ice Dead Load Factor:				$\begin{array}{r} \circ \\ \\ \hline \end{array} \begin{array}{r} \text { Wind } \\ 1.60 \\ 0.90 \\ 0.00 \end{array}$							$0.9 \mathrm{D}+1.6 \mathrm{~W} 115 \mathrm{mph}$ Wind at 60° From Face Wind Importance Factor: 1.15 Ice Importance Factor: 1.25						
Sect Seq	Wind Height (ft)	Total Flat qz Area (psf) (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Ice Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (Ib)	Struct Force (Ib)	Linear Force (lb)	Total Force (lb)
1	10.0	23.1744 .336	17.52	0.00	0.14	2.81	0.80	1.00	0.00	44.30	105.94	0.00	7,521.6		3918.07	2519.62	6,437.68
2	30.0	23.1940 .911	17.52	0.00	0.14	2.79	0.80	1.00	0.00	41.58	105.94	0.00	7,338.5		3660.62	2521.74	6,182.37
3	50.0	26.8337 .553	16.69	0.00	0.15	2.78	0.80	1.00	0.00	38.39	105.94	0.00	6,786.7		3896.71	2918.01	6,814.72
4	70.0	29.5429 .932	16.69	0.00	0.14	2.81	0.80	1.00	0.00	32.08	105.94	0.00	6,380.4		3618.33	3212.46	6,830.78
5	90.0	31.7327 .076	15.85	0.00	0.15	2.79	0.80	1.00	0.00	29.47	105.94	0.00	5,873.5		3548.36	3451.61	6,999.96
6	110.0	33.6126 .395	14.19	0.00	0.16	2.75	0.80	1.00	0.00	28.40	105.94	0.00	4,818.1		3565.85	3655.29	7,221.14
7	130.0	35.2519 .279	13.35	0.00	0.15	2.78	0.80	1.00	0.00	22.34	106.39	0.00	4,473.3		2982.24	3943.21	6,925.45
8	150.0	36.7216 .640	12.52	0.00	0.16	2.75	0.80	1.00	0.00	19.93	94.75	0.00	3,681.4		2735.20	3616.98	6,352.17
9	170.0	38.0614 .129	11.68	0.00	0.17	2.69	0.80	1.00	0.00	17.63	82.58	0.00	3,133.3		2455.71	3214.22	5,669.94
10	185.0	38.997 .341	5.01	0.00	0.20	2.59	0.80	1.00	0.00	8.72	24.06	0.00	1,156.7	0.0	1197.02	940.61	2,137.63
													51,163.6				61,571.85

Structure: Site Name Height: Base Elev: Gh:		MA12227- Truro 190.00 (ft) 0.000 (ft) 0.85		Topography: 1				Code: TIA-222-G Exposure: B Crest Height: 0.00 Site Class: D - Stiff Soil Struct Class: III					10/26/2023			$(((1)$	
Load Case: 1.2D + 1.0Di + Wind Load Factor: Dead Load Factor: Ice Dead Load Factor:				$\begin{array}{r} \mathrm{OWi} \mathrm{~N} \\ 1.00 \\ 1.20 \\ 1.00 \end{array}$						1.2	D + 1.0	ODi + 1	.0Wi 50	Wind Importance Factor: Ice Importance Factor:			$\begin{array}{r} \text { om Face } \\ 1.00 \\ 1.25 \end{array}$
Sect Seq	Wind Height (ft)	Total Flat qz Area (psf) (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Ice Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)
1	10.0	3.8144 .336	66.25	48.72	0.25	2.44	1.00	1.00	1.66	83.06	193.62	61.01	20,663.	10634.3	657.07	625.50	1,282.57
2	30.0	3.8140 .911	68.72	51.20	0.27	2.39	1.00	1.00	1.86	81.41	194.52	74.29	21,516.	11731.5	629.81	662.57	1,292.39
3	50.0	4.4137 .553	67.26	50.57	0.28	2.35	1.00	1.00	1.95	77.43	197.76	78.18	21,056.	12007.1	682.54	781.97	1,464.52
4	70.0	4.8629 .932	65.60	48.91	0.28	2.35	1.00	1.00	2.02	68.86	199.99	80.86	20,064.	11557.6	666.62	874.07	1,540.69
5	90.0	5.2227 .076	62.59	46.74	0.30	2.31	1.00	1.00	2.07	64.49	201.70	82.92	19,296.	11465.0	659.53	946.33	1,605.85
6	110.0	5.5226 .395	66.53	52.35	0.35	2.17	1.00	1.00	2.11	67.36	203.10	84.60	18,173.	11749.0	687.47	995.33	1,682.80
7	130.0	5.7919 .279	61.84	48.49	0.35	2.16	1.00	1.00	2.15	57.44	201.31	85.30	16,833.	10869.4	612.45	1036.58	1,649.03
8	150.0	6.0416 .640	57.04	44.52	0.38	2.10	1.00	1.00	2.18	52.47	174.59	78.17	14,674.	9765.7	566.24	931.17	1,497.41
9	170.0	6.2614 .129	52.26	40.58	0.42	2.02	1.00	1.00	2.21	47.90	151.28	64.43	12,696.	8518.8	514.92	762.57	1,277.50
10	185.0	6.417 .341	29.46	24.45	0.57	1.83	1.00	1.00	2.23	28.67	41.60	18.97	4,840.7	3298.4	285.40	156.70	442.10
													9,814.9	101596			13,734.86

Structure: Site Name: Height: Base Elev: Gh:		MA12227-A-SBA Truro 190.00 (ft) 0.000 (ft) 0.85		Topography: 1				Code: Exposure: Crest Height: Site Class: Struct Class:			TIA-222-G B 0.00 D - Stiff Soil III		10/26/2023					
Load Case: $1.2 \mathrm{D}+1.0 \mathrm{Di}+$ Wind Load Factor: Dead Load Factor: Ice Dead Load Factor:				.0Wi 90° Wind$\begin{aligned} & 1.00 \\ & 1.20 \\ & 1.00 \end{aligned}$				Dr	Ice Thick (in)	Eff Area (sqft)	$$		Total Weight (lb)	Weight Ice (lb)	Struct Force (lb)	$\text { at } 90^{\circ} \mathrm{Fr}$ Factor Factor:	$\begin{array}{r} \text { m Face } \\ 1.00 \\ 1.25 \end{array}$	
Sect Seq	Wind Height (ft)	Total Flat qz Area (psf) (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df						Linear Force (lb)			Total Force (lb)		
1	10.0	3.8144 .336	66.25	48.72	0.25	2.44	0.85	1.00	1.66	76.40	193.62	61.01		20,663.	10634.3	604.45	625.50	1,229.96
2	30.0	3.8140 .911	68.72	51.20	0.27	2.39	0.85	1.00	1.86	75.27	194.52	74.29	21,516.	11731.5	582.34	662.57	1,244.91	
3	50.0	4.4137 .553	67.26	50.57	0.28	2.35	0.85	1.00	1.95	71.79	197.76	78.18	21,056.	12007.1	632.89	781.97	1,414.86	
4	70.0	4.8629 .932	65.60	48.91	0.28	2.35	0.85	1.00	2.02	64.37	199.99	80.86	20,064.	11557.6	623.15	874.07	1,497.22	
5	90.0	5.2227 .076	62.59	46.74	0.30	2.31	0.85	1.00	2.07	60.43	201.70	82.92	19,296.	11465.0	617.99	946.33	1,564.32	
6	110.0	5.5226 .395	66.53	52.35	0.35	2.17	0.85	1.00	2.11	63.40	203.10	84.60	18,173.	11749.0	647.07	995.33	1,642.40	
7	130.0	5.7919 .279	61.84	48.49	0.35	2.16	0.85	1.00	2.15	54.55	201.31	85.30	16,833.	10869.4	581.62	1036.58	1,618.20	
8	150.0	6.0416 .640	57.04	44.52	0.38	2.10	0.85	1.00	2.18	49.97	174.59	78.17	14,674.	9765.7	539.30	931.17	1,470.47	
9	170.0	6.2614 .129	52.26	40.58	0.42	2.02	0.85	1.00	2.21	45.78	151.28	64.43	12,696.	8518.8	492.14	762.57	1,254.72	
10	185.0	6.417 .341	29.46	24.45	0.57	1.83	0.85	1.00	2.23	27.57	41.60	18.97	4,840.7	3298.4	274.44	156.70	431.14	
													69,814.9	101596.7			13,368.20	

Structure: Site Name: Height: Base Elev: Gh:		MA12227-A-SBA Truro 190.00 (ft) 0.000 (ft) 0.85		Topography: 1				Code: Exposure: Crest Height: Site Class: Struct Class:			$\begin{aligned} & \text { TIA-222-G } \\ & \text { B } \\ & 0.00 \\ & \text { D - Stiff Soil } \\ & \text { III } \end{aligned}$					 Tower Engineering Solutions	
Load Case: $1.0 \mathrm{D}+1.0 \mathrm{~W}$ Wind Load Factor: Dead Load Factor: Ice Dead Load Factor:				$\begin{array}{r} \circ \\ \hline \end{array} \begin{array}{r} \text { Wind } \\ 1.00 \\ 1.00 \\ 0.00 \end{array}$							$1.0 \mathrm{D}+1.0 \mathrm{~W} 60 \mathrm{mph}$ Wind at 60° From Face Wind Importance Factor: 1.00 Ice Importance Factor: 1.25						
$\begin{aligned} & \text { Sect } \\ & \text { Seq } \end{aligned}$	Wind Height (ft)	Total Flat qz Area (psf) (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Ice Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (Ib)	Weight Ice (Ib)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)
1	10.0	5.4844 .336	17.52	0.00	0.14	2.81	0.80	1.00	0.00	45.40	105.94	0.00	8,357.4	0.0	594.03	372.75	966.78
2	30.0	5.4940 .911	17.52	0.00	0.14	2.79	0.80	1.00	0.00	42.66	105.94	0.00	8,153.9	0.0	555.74	373.07	928.81
3	50.0	6.3537 .553	16.69	0.00	0.15	2.78	0.80	1.00	0.00	39.51	105.94	0.00	7,540.8	0.0	593.24	431.69	1,024.93
4	70.0	6.9929 .932	16.69	0.00	0.14	2.81	0.80	1.00	0.00	33.40	105.94	0.00	7,089.4	0.0	557.30	475.25	1,032.55
5	90.0	7.5127 .076	15.85	0.00	0.15	2.79	0.80	1.00	0.00	30.65	105.94	0.00	6,526.1	0.0	545.99	510.63	1,056.62
6	110.0	7.9626 .395	14.19	0.00	0.16	2.75	0.80	1.00	0.00	29.18	105.94	0.00	5,353.5	0.0	542.00	540.77	1,082.76
7	130.0	8.3419 .279	13.35	0.00	0.15	2.78	0.80	1.00	0.00	23.00	104.73	0.00	4,970.3	0.0	454.10	559.87	1,013.98
8	150.0	8.6916 .640	12.52	0.00	0.16	2.75	0.80	1.00	0.00	20.42	93.08	0.00	4,090.4	0.0	414.63	510.63	925.26
9	170.0	9.0114 .129	11.68	0.00	0.17	2.69	0.80	1.00	0.00	17.96	80.92	0.00	3,481.5	0.0	370.22	450.15	820.37
10	185.0	9.237 .341	5.01	0.00	0.20	2.59	0.80	1.00	0.00	8.75	23.45	0.00	1,285.2	0.0	177.68	129.67	307.36
													56,848.4	0.			9,159.42

Splices

		Top Splice						Bottom Splice					
Sect	Top Elev	Load Case	Force (kips)	Cap (kips)	Use \%	Bolt Type	Num Bolts	Load Case	Force (kips)	Cap (kips)	Use \%	Bolt Type	Num Bolts
1	20	1.2D + 1.6W Normal Wind	475.69	0.00	0.0			1.2D + 1.6W Normal Wind	529.26	0.00			
2	40	1.2D + 1.6W Normal Wind	420.17	0.00	0.0			1.2D + 1.6W Normal Wind	475.69	0.00		1/2 A325	6
3	60	1.2D + 1.6W Normal Wind	363.22	0.00	0.0			1.2D + 1.6W Normal Wind	420.17	0.00		1/2 A325	6
4	80	1.2D + 1.6W Normal Wind	305.14	0.00	0.0			1.2D + 1.6W Normal Wind	363.22	0.00		1/2 A325	6
5	100	1.2D + 1.6W Normal Wind	245.41	0.00	0.0			1.2D + 1.6W Normal Wind	305.14	0.00		1/2 A325	6
6	120	1.2D + 1.6W Normal Wind	184.54	0.00	0.0			1.2D + 1.6W Normal Wind	245.41	0.00		3/8 A325	6
7	140	1.2D + 1.6W Normal Wind	120.57	0.00	0.0			$1.2 \mathrm{D}+1.6 \mathrm{~W}$ Normal Wind	184.54	0.00		3/8 A325	6
8	160	1.2D + 1.6W Normal Wind	57.74	0.00	0.0			1.2D + 1.6W Normal Wind	120.57	0.00		3/8 A325	6
9	180	1.2D + 1.6W Normal Wind	10.58	0.00	0.0			1.2D + 1.6W Normal Wind	57.74	0.00		3/8 A325	6
10	190	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 90^{\circ} \mathrm{Wind}$	0.57	0.00	0.0			1.2D + 1.6W Normal Wind	10.58	0.00		3/8 A325	6

HORIZONTAL MEMBERS

Sect	Top Elev	Member	Force (kips)	Load Case	Len (ft)	Bracing \%			KL/R	$\begin{gathered} \text { Fy } \\ (\mathbf{k s i}) \end{gathered}$	Mem Cap (kips)	Num Bolts	Num Holes	Shear Cap (kips)	Bear Cap (kips)	Use \%	Controls
1	20										0.00	0	0				
2	40										0.00	0	0				
3	60										0.00	0	0				
4	80										0.00	0	0				
5	100										0.00	0	0				
6	120										0.00	0	0				
7	140										0.00	0	0				
8	160										0.00	0	0				
9	180										0.00	0	0				
10	190	SAE - 2X2X0.1875	-0.28	0.9D + 1.6W Normal Wind	5.41	100	100	100	164.65	36.00	5.92	1	1	12.43	9.79	5	Member Z

DIAGONAL MEMBERS

Sect	Top Elev	Member	Force (kips)	Load Case	Len (ft)	$\mathbf{x}^{\mathbf{B}}$		$\begin{aligned} & \% \\ & \mathbf{Z} \end{aligned}$	KL/R	$\begin{gathered} \text { Fy } \\ \text { (ksi) } \end{gathered}$	Mem Cap (kips)	Num Bolts	Num Holes	Shear Cap (kips)	Bear Cap (kips)	Use \%	Controls
1	20	SAE - 4X4X0.25	-14.9	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ}$ Wind	23.18	49	49	49	171.44	36.00	14.91	1	1	24.35	17.4	101	Member Z
2	40	SAE - 4X4X0.25	-15.2	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ}$ Wind	21.46	48	48	48	155.49	36.00	18.13	1	1	24.35	17.4	88	Bolt Bear
3	60	SAE - 4X4X0.25	-14.5	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ}$ Wind	19.76	48	48	48	143.17	36.00	21.38	1	1	24.35	17.4	84	Bolt Bear
4	80	SAE - $3.5 \times 3.5 \times 0.25$	-13.6	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	18.08	48	48	48	150.02	36.00	16.96	1	1	24.35	17.4	80	Member Z
5	100	SAE - $3.5 \times 3.5 \times 0.25$	-12.8	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	16.42	48	48	48	136.26	36.00	20.56	1	1	24.35	17.4	74	Bolt Bear
6	120	SAE - 3X3X0.1875	-11.3	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ}$ Wind	14.19	48	48	48	137.10	36.00	13.10	1	1	24.35	13.0	87	Bolt Bear

Force/Stress Compression Summary

Structure Site Nam Height: Base Elev Gh:		$\begin{array}{ll} : & \text { MA12227-A-SBA } \\ \text { e: } & \text { Truro } \\ & 190.00(\mathrm{ft}) \\ \mathrm{v}: & 0.000(\mathrm{ft}) \\ & 0.85 \end{array}$		Topography: 1	Code: Exposure: Crest Height: Site Class: Struct Class:				$\begin{aligned} & \hline \text { TIA-222-G } \\ & \text { B } \\ & 0.00 \\ & \text { D - Stiff Soil } \\ & \text { III } \end{aligned}$		10/26/2023				$(((1) \mid))$		
DIAGONAL MEMBERS																	
Sect	Top Elev	Member	Force (kips)	Load Case	Len (ft)			$\begin{gathered} \% \\ \text { Z } \end{gathered}$	KL/R	$\begin{gathered} \text { Fy } \\ \text { (ksi) } \end{gathered}$	Mem Cap (kips)	Num Bolts	Num Holes	Shear Cap (kips)	Bear Cap (kips)	$\begin{aligned} & \text { Use } \\ & \% \end{aligned}$	Controls
7	140	SAE - $2.5 \times 2.5 \times 0.25$	-10.6	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ}$ Wind	12.52	47	47	47	143.77	36.00	13.01	1	1	24.35	17.4	82	Member Z
8	160	SAE - $2.5 \times 2.5 \times 0.1875$	-9.05	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ}$ Wind	10.89	48	48	48	126.74	36.00	12.55	1	1	24.35	13.0	72	Member Z
9	180	SAE - $2.5 \times 2.5 \times 0.1875$	-7.68	1.2D + $1.6 \mathrm{~W} 90^{\circ}$ Wind	9.33	47	47	47	109.72	36.00	15.51	1	1	24.35	13.0	59	Bolt Bear
10	190	SAE - 2X2X0.1875	-2.43	$0.9 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	7.00	46	46	46	103.53	36.00	13.08	1	1	12.43	9.79	25	Bolt Bear

Structure: Site Name: Height: Base Elev: Gh:		$\begin{aligned} & \text { MA12227-A-SBA } \\ & \text { Truro } \\ & 190.00(\mathrm{ft}) \\ & 0.000(\mathrm{ft}) \\ & 0.85 \end{aligned}$	Topography: 1	Code: TIA-222-G Exposure: B Crest Height: 0.00 Site Class: D - Stiff Soil Struct Class: III		$\text { Page: } 15$		$\underbrace{(((1,1)))}_{\text {Tower Engineering Solutions }}$	
LEG MEMBERS									
Sect	Top Elev	Member	Force (kips)	Load C	Case	$\begin{gathered} \text { Fy } \\ \text { (ksi) } \end{gathered}$	Mem Cap (kips)	$\begin{gathered} \text { Leg } \\ \text { Use \% } \end{gathered}$	Controls
1	20	SOL-5 1/4" SOLID	446.93	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind		50	974.16	45.9	Member
2	40	SOL-51/4" SOLID	402.36	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$		50	974.16	41.3	Member
3	60	SOL-5" SOLID	355.79	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$		50	883.58	40.3	Member
4	80	SOL-5" SOLID	307.53	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$		50	883.58	34.8	Member
5	100	SOL-43/4" SOLID	257.42	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$		50	797.45	32.3	Member
6	120	SOL-41/4" SOLID	207.55	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind		50	638.37	32.5	Member
7	140	SOL-4" SOLID	152.90	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$		50	565.47	27.0	Member
8	160	SOL-3 3/4" SOLID	95.30	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$		50	497.03	19.2	Member
9	180	SOL-3 1/2" SOLID	38.96	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$		50	432.95	9.0	Member
10	190	SOL - 3" SOLID	5.42	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$		50	318.11	1.7	Member

Splices

		Top Splice						Bottom Splice					
Sect	Top Elev	Load Case	Force (kips)	Cap (kips)	Use \%	Bolt Type	Num Bolts	Load Case	Force (kips)	Cap (kips)	Use \%	Bolt Type	Num Bolts
1	20	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$	408.68	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$	455.3	0.00			
2	40	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	362.28	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	408.6	663.98	61.6	1/2 A325	-6
3	60	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	314.39	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	362.2	663.98	54.6	1/2 A325	-6
4	80	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$	264.77	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	314.3	663.98	47.3	1/2 A325	-6
5	100	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	212.87	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	264.7	663.98	39.9	1 1/2 A325	-6
6	120	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$	159.08	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	212.8	545.68	39.0	3/8 A325	-6
7	140	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$	100.95	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	159.0	545.68	29.2	$13 / 8$ A325	-6
8	160	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	45.57	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	100.9	545.68	18.5	$13 / 8$ A325	-6
9	180	$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$	6.87	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	45.57	545.68	8.4	$13 / 8$ A325	-6
10	190		0.00	0.00	0.0			$0.9 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ}$ Wind	6.87	545.68	1.3	$13 / 8$ A325	-6

HORIZONTAL MEMBERS													
Sect	Top Elev	Member	Force (kips)	Load Case	$\begin{gathered} \text { Fy } \\ (\mathbf{k s i}) \end{gathered}$	Mem Cap (kips)	Num Bolts	Num Holes	$\begin{aligned} & \hline \text { Shear } \\ & \text { Cap } \\ & \text { (kips) } \end{aligned}$	Bear Cap (kips)	$\begin{aligned} & \text { B.S. } \\ & \text { Cap } \\ & \text { (kips) } \end{aligned}$	Use \%	Controls
1	20	-			36	0.00	0	0					
2	40	-			36	0.00	0	0					
3	60	-			36	0.00	0	0					
4	80	-			36	0.00	0	0					
5	100	-			36	0.00	0	0					
6	120	-			36	0.00	0	0					
7	140	-			36	0.00	0	0					
8	160	-			36	0.00	0	0					
9	180	-			36	0.00	0	0					
10	190	SAE - 2X2X0.1875	0.30	$1.2 \mathrm{D}+1.6 \mathrm{~W} 60^{\circ} \mathrm{Wind}$	36	18.58	1	1	12.43	9.79	7.50	4.0	Blck Shear

DIAGONAL MEMBERS

Sect	Top Elev	Member	Force (kips)	Load Case	$\begin{gathered} \text { Fy } \\ (\mathbf{k s i}) \end{gathered}$	Mem Cap (kips)	Num Bolts	Num Holes		$\begin{gathered} \hline \text { Bear } \\ \text { Cap } \\ \text { (kips) } \end{gathered}$	B.S. Cap (kips)	Use \%	Controls
1	20	SAE - 4X4X0.25	15.40	$0.9 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	36	55.14	1	1	24.35	17.40	16.95	90.8	Blck Shear
2	40	SAE - 4X4X0.25	15.12	$0.9 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	36	55.14	1	1	24.35	17.40	16.95	89.2	Blck Shear
3	60	SAE - 4X4X0.25	14.37	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	36	55.14	1	1	24.35	17.40	16.95	84.8	Blck Shear
4	80	SAE - $3.5 \times 3.5 \times 0.25$	13.50	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	36	46.98	1	1	24.35	17.40	16.95	79.7	Blck Shear
5	100	SAE - $3.5 \times 3.5 \times 0.25$	12.70	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	36	46.98	1	1	24.35	17.40	16.95	74.9	Blck Shear
6	120	SAE - 3X3X0.1875	11.18	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	36	29.44	1	1	24.35	13.05	10.67	104.8	Blck Shear
7	140	SAE - $2.5 \times 2.5 \times 0.25$	10.56	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90^{\circ} \mathrm{Wind}$	36	30.67	1	1	24.35	17.40	12.87	82.0	Blck Shear

Force/Stress Tension Summary

Seismic Section Forces

Load Case: 1.2D + 1.0E

Dead Load Factor	1.20	Sds	0.175	Ss	0.1640	Fa	1.6000	Ke
Seismic Load Factor	1.00	Sd1	0.091	S1	0.0570	Fv 2.4000	Kg	0.0000
Seismic Importance Factor	1.50	SA	0.152	R	3.0000	Vs	6.4200	f1
1.6730								

Sect \#	Elev (ft)	Wz (lb)	a	b	c	Lateral Fsz (lb)
1	10.00	8357.3	0.01	0.05	0.03	40.62
2	30.00	8153.8	0.05	0.07	0.04	85.04
3	50.00	7540.8	0.13	0.07	0.03	125.09
4	70.00	7089.3	0.26	0.05	0.02	175.44
5	90.00	6526.1	0.42	0.01	0.01	217.16
6	110.00	5353.4	0.63	-0.06	0.02	221.27
7	130.00	6963.3	0.88	-0.12	0.08	366.26
8	150.00	5778.8	1.18	-0.02	0.24	445.72
9	170.00	10223.	1.51	0.53	0.56	1312.33
10	185.00	4115.2	1.79	1.50	0.96	785.73

Load Case: 0.9D + 1.0E

Dead Load Factor	0.90	Sds	0.175	Ss	0.1640	Fa	1.6000	Ke	0.0000
Seismic Load Factor	1.00	Sd1	0.091	S1	0.0570	Fv	2.4000	$\mathbf{K g}$	0.0000
Seismic Importance Factor	1.50	SA	0.152	R	3.0000	Vs	6.4200	f1	1.6730

Sect \#	Elev (ft)	Wz (lb)	a	b	c	Lateral Fsz (lb)
1	10.00	8357.3	0.01	0.05	0.03	40.62
2	30.00	8153.8	0.05	0.07	0.04	85.04
3	50.00	7540.8	0.13	0.07	0.03	125.09
4	70.00	7089.3	0.26	0.05	0.02	175.44
5	90.00	6526.1	0.42	0.01	0.01	217.16
6	110.00	5353.4	0.63	-0.06	0.02	221.27
7	130.00	6963.3	0.88	-0.12	0.08	366.26
8	150.00	5778.8	1.18	-0.02	0.24	445.72
9	170.00	10223.	1.51	0.53	0.56	1312.33
10	185.00	4115.2	1.79	1.50	0.96	785.73

Support Forces Summary

Max Reactions

Max Uplift:	-452.93	(kips)	Moment:	9745.70
(ft-kips)				
Max Down:	528.19	(kips)	Total Down:	84.12
(kips)				
Max Shear:	51.05	(kips)	Total Shear:	87.35

Analysis Summary

Max Reactions

Leg Overturning				
Max Uplift:	-452.93	(kips)	Moment:	9745.70
(ft-kips)				
Max Down:	528.19	(kips)	Total Down:	84.12
(kips)				
Max Shear:	51.05	(kips)	Total Shear:	87.35
(kips)				

Anchor Bolts

Bolt Size (in.):	2.00	Number Bolts:	8
Yield Strength (Ksi):	50.00	Tensile Strength (Ksi):	65.00
Detail Type:	D	Length:	1.00

Max Usages

Max Leg: 70.1\% (1.2D + 1.6W Normal Wind - Sect 1)
Max Diag: 104.8\% (1.2D + 1.6W 90° Wind - Sect 6)
Max Horiz: 4.8\% (0.9D + 1.6W Normal Wind - Sect 10)

Max Deflection, Twist and Sway

Load Case	Elevation (ft)	Deflection (ft)	Twist (deg)	Sway (deg)
0.9D + 1.0E - Normal To Face	140.00	0.0437	0.0016	0.0355
	155.00	0.0534	0.0018	0.0394
	165.00	0.0604	0.0018	0.0411
	175.00	0.0674	0.0018	0.0411
	186.67	0.0756	0.0018	0.0402
	190.00	0.0761	0.0000	0.0399
$0.9 \mathrm{D}+1.6 \mathrm{~W} 115 \mathrm{mph}$ Wind at 60° From Face	140.00	0.6489	-0.0217	0.4841
	155.00	0.7812	-0.0229	0.5191
	165.00	0.8728	-0.0234	0.5241
	175.00	0.9641	-0.0236	0.5258
	186.67	1.0697	-0.0230	0.5138
	190.00	1.0989	-0.0220	0.4947
$0.9 \mathrm{D}+1.6 \mathrm{~W} 115 \mathrm{mph}$ Wind at 90° From Face	140.00	0.6565	-0.0253	0.4894
	155.00	0.7903	-0.0267	0.5223
	165.00	0.8829	-0.0272	0.5286
	175.00	0.9750	-0.0275	0.5331
	186.67	1.0816	-0.0268	0.5188
	190.00	1.1109	-0.0255	0.4946
$0.9 \mathrm{D}+1.6 \mathrm{~W} 115 \mathrm{mph}$ Wind at Normal To Face	140.00	0.6795	0.0225	0.5032
	155.00	0.8172	0.0237	0.5392
	165.00	0.9122	0.0242	0.5440
	175.00	1.0071	0.0245	0.5460
	186.67	1.1168	0.0238	0.5336
	190.00	1.1470	0.0000	0.5287

$1.0 \mathrm{D}+1.0 \mathrm{~W} 60 \mathrm{mph}$ Wind at 60° From Face	140.00	0.0954	-0.0032	0.0709
	155.00	0.1149	-0.0034	0.0760
	165.00	0.1283	-0.0034	0.0770
	175.00	0.1417	-0.0035	0.0769
	186.67	0.1572	-0.0034	0.0754
	190.00	0.1615	-0.0032	0.0726
$1.0 \mathrm{D}+1.0 \mathrm{~W} 60 \mathrm{mph}$ Wind at 90° From Face	140.00	0.0966	-0.0037	0.0718
	155.00	0.1162	-0.0039	0.0767
	165.00	0.1298	-0.0040	0.0776
	175.00	0.1433	-0.0040	0.0782
	186.67	0.1590	-0.0039	0.0761
	190.00	0.1633	-0.0037	0.0725
$1.0 \mathrm{D}+1.0 \mathrm{~W} 60 \mathrm{mph}$ Wind at Normal To Face	140.00	0.1000	0.0033	0.0739
	155.00	0.1202	0.0035	0.0792
	165.00	0.1342	0.0036	0.0797
	175.00	0.1481	0.0036	0.0803
	186.67	0.1642	0.0035	0.0783
	190.00	0.1686	0.0000	0.0777
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 50 \mathrm{mph}$ Wind at 60° From Face	140.00	0.1324	-0.0043	0.0966
	155.00	0.1586	-0.0046	0.1024
	165.00	0.1766	-0.0046	0.1040
	175.00	0.1946	-0.0047	0.1039
	186.67	0.2154	-0.0046	0.1018
	190.00	0.2204	-0.0044	0.0985
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 50 \mathrm{mph}$ Wind at 90° From Face	140.00	0.1329	-0.0050	0.0970
	155.00	0.1592	-0.0053	0.1032
	165.00	0.1773	-0.0054	0.1043
	175.00	0.1953	-0.0054	0.1046
	186.67	0.2162	-0.0053	0.1021
	190.00	0.2216	-0.0051	0.0978
1.2D + 1.0Di + 1.0Wi 50 mph Wind at Normal From Face	140.00	0.1344	0.0044	0.0982
	155.00	0.1611	0.0046	0.1048
	165.00	0.1795	0.0047	0.1052
	175.00	0.1978	0.0047	0.1060
	186.67	0.2189	0.0046	0.1033
	190.00	0.2239	0.0000	0.1028
1.2D + 1.0E - Normal To Face	140.00	0.0437	0.0016	0.0356
	155.00	0.0535	0.0018	0.0395
	165.00	0.0604	0.0019	0.0412
	175.00	0.0675	0.0019	0.0412
	186.67	0.0757	0.0018	0.0403
	190.00	0.0762	0.0000	0.0399
$1.2 \mathrm{D}+1.6 \mathrm{~W} 115 \mathrm{mph}$ Wind at 60° From Face	140.00	0.6496	-0.0217	0.4847
	155.00	0.7822	-0.0229	0.5198
	165.00	0.8739	-0.0234	0.5249
	175.00	0.9653	-0.0236	0.5265
	186.67	1.0711	-0.0230	0.5146
	190.00	1.1004	-0.0220	0.4954
1.2D +1.6 W 115 mph Wind at 90° From Face	140.00	0.6572	-0.0253	0.4902
	155.00	0.7913	-0.0267	0.5231
	165.00	0.8840	-0.0273	0.5294
	175.00	0.9763	-0.0276	0.5339
	186.67	1.0830	-0.0268	0.5196
	190.00	1.1124	-0.0256	0.4954
$1.2 \mathrm{D}+1.6 \mathrm{~W} 115 \mathrm{mph}$ Wind at Normal To Face	140.00	0.6804	0.0226	0.5040
	155.00	0.8182	0.0237	0.5401
	165.00	0.9134	0.0242	0.5447
	175.00	1.0083	0.0245	0.5468
	186.67	1.1182	0.0238	0.5344
	190.00	1.1485	0.0000	0.5295

Allowable overstress\%: $\quad 5.00 \%$ TES Engr. Number:	143003	Page 2/2 Date:	10/26/2023	
Apply 1.35 for e/w per G/H: 1.35				
Foundation Analysis and Design: Uplift Strength Reduction Factor:	0.75	Compression Strength Reduction Factor:	0.75	
Total Dry Soil Volume (cu. Ft.):	0.00	Total Dry Soil Weight (Kips):	0.00	
Total Buoyant Soil Volume (cu. Ft.):	0.00	Total Buoyant Soil Weight (Kips):	0.00	
Total Effective Soil Weight (Kips):	0.00	Weight from the Concrete Block at Top (K):	0.00	
Total Dry Concrete Volume (cu. Ft.):	6500.31	Total Dry Concrete Weight (Kips):	975.05	
Total Buoyant Concrete Volume (cu. Ft.):	0.00	Total Buoyant Concrete Weight (Kips):	0.00	
Total Effective Concrete Weight (Kips):	975.05	Total Vertical Load on Base (Kips):	1059.17	
			Load/	
Check Soil Capacities:			Capacity Ratio	
Calculated Maxium Net Soil Pressure under the base (psf):	2041.78	< Allowable Factored Soil Bearing (psf):	$3000 \quad 0.68$	OK!
Allowable Foundation Overturning Resistance (kips-ft.):	18271.6	> Design Factored Momont (kips-ft):	101390.55	OK!
Factor of Safety Against Overturning (O. R. Moment/Design Moment):	1.80	OK!		
Check the capacities of Reinforceing Concrete:				
Strength reduction factor (Flexure and axial tension):	0.90	Strength reduction factor (Shear):	0.75	
Strength reduction factor (Axial compresion):	0.65	Wind Load Factor on Concrete Design:	1.00 Load/	
(2).Concrete Pad:				
One-Way Design Shear Capacity (L or W Direction, Kips):	1887.3	> One-Way Factored Shear (L/W-Dir Kips	$275.9 \quad 0.15$	OK!
One-Way Design Shear Capacity (Diagonal Dir., Kips):	947.5	> One-Way Factored Shear (Dia. Dir, Kips	$235.8 \quad 0.25$	OK!
Lower Steel Pad Reinforcement Ratio (L or W-Direct.):	0.0036	Lower Steel Reinf. Ratio (Dia. Dir.):	0.0040	
Lower Steel Pad Moment Capacity (L or W-Dir. Kips-ft):	18185.3	> Moment at Bottom (L-Direct. K-Ft):	1451.90 .08	OK!
Lower Steel Pad Moment Capacity (Dia. Direction,K-ft):	14992.1	$>$ Moment at Bottom (Dia. Dir. K-Ft):	1378.8	OK!
Upper Steel Pad Reinforcement Ratio (L or W -Direction):	0.0030	Upper Steel Reinf. Ratio (Dia. Dir.):	0.0033	
Upper Steel Pad Moment Capacity (L or W-Dir., Kips-ft):	15000.2	> Moment at the top (L-Dir Kips-Ft):	$754.4 \quad 0.05$	OK!
Upper Steel Pad Moment Capacity (Dia. Direction, K-ft):	12376.1	$>$ Moment at the top (Dia. Dir., K-Ft):	$500.4 \quad 0.04$	OK!
Punching Failure Capacity (Kips):	4230.0	$>$ Punch. Failure Factored Shear (K):	528.20 .12	OK!

Concrete Strength (Psi):	3000	Vertical bar yield (ksi)	0	Pad Rebar Yield (Ksi):	60
Vertical Rebar Size \#\#:	0	Vertical Rebar Area (sq. in//each):	\#N/A	Min. aty. of Vertical Rebars:	\#N/A
Pod Steel Rebar Size (\#):	10	Vertical Rebar Area (sq. in./each):	1.27		
Min. Qty. of Rebars in L-Direction:	\#DIV/O.	Min. Qty. of Rebars in W-Direction:	\#DIV/O!		
Reinforce Concrete Pad by enlarging the size of pier (Yes/No):					

Catherine Ware
SBA Network Services, LLC.
101 Interchange Plaza, Suite 103
Cranbury, NJ 08512
(917) 868-8365

B+T Group
1717 S. Boulder, Suite 300
Tulsa, OK 74119
(918) 587-4630
btwo@btgrp.com

Subject:

Carrier Designation:

Appurtenance Mount Analysis Report

Dish Wireless Co-Locate	
Site Number: BOBOS00593A	

Site Name: N/A
SBA Network Services Designation:
Site Number:
MA12227-A
Truro
163468, v1
149562.005.01.0001

Site Data:
5 Town Dump Road, Truro, MA, 02666, Barnstable County
Latitude 41.98578°, Longitude -70.04133${ }^{\circ}$
Self-Support Tower
(3) 8 ft . Sector Mount

Dear Catherine Ware,
$B+T$ Group is pleased to submit this "Appurtenance Mount Analysis Report" to determine the structural integrity of the antenna mount on the above-mentioned structure.

The purpose of the analysis is to determine the acceptability of the mount's stress level. Based on our analysis we have determined the stress level for the mount under the following load case to be:

Proposed Equipment
Note: See Table 1 for the final loading configuration

Sufficient Capacity
(Passing at 49.3\%)
The analysis has been performed in accordance with the ANSI/TIA-222-G standard and 2015 IBC as amended by the Massachusetts State Building Code, Ninth Edition, based upon an ultimate 3-second gust wind speed of 149 mph converted to a nominal 3-second gust wind speed of 115 mph per section 1609.3.1 as required for use in the ANSI/TIA-222-G Standard per Exception \#5 of Section 1609.1.1. Exposure Category B and Risk Category III were used in this analysis.

All the equipment proposed in this report shall be installed in accordance with the drawings for the determined available structural capacity to be effective.

We at $B+T$ Group appreciate the opportunity of providing our continuing professional services to you and SBA Network Services, LLC. If you have any questions or need further assistance on this or any other projects, please give us a call.

Mount structural analysis prepared by: Joseph Variamparampil
Respectfully submitted by: B\&T Engineering, Inc.

Peter D. Smith, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Information
Table 2 - Documents Provided

3) ANALYSIS PROCEDURE

3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

5) RECOMMENDATIONS

6) APPENDIX A

RISA-3D Output

7) APPENDIX B

Additional Calculations

1) INTRODUCTION

The appurtenance mount consists of Commscope sector mount Part\# MTC3975083 at 155 ft ., attached to self-support tower at 5 Town Dump Road, Truro, MA, 02666, Barnstable County. The proposed antenna loading information was obtained from SBA Network Services, LLC. All information provided to B+T Group was assumed accurate and complete.

2) ANALYSIS CRITERIA

The structural analysis was performed for this mount in accordance with the ANSI/TIA-222-G-2-2005 Structural Standard for Antenna Supporting Structures and Antennas - Addendum 2 using a 3-second gust wind speed of 115 mph with no ice and 50 mph with 0.75 inch escalated ice thickness Exposure category B \& Topographic Category 1 and Risk Category III were used in the analysis. In addition, the sector mount has been analyzed for various live loading conditions consisting of a $250-\mathrm{lb}$ man live load applied individually at the midpoint and cantilevered ends of horizontal members as well as a 500-pound man live load applied individually at mount pipe locations using a 3 -second gust of 30 mph . The mount was analyzed under 30° increments in the wind direction. The analyzed loading is detailed in Table 1.

Table 1 - Proposed Equipment Information

Loading	RAD Center Elev. (ft.)	Position	Qty.	Description	Note
Proposed	155	1	3	JMA Wireless MX08FRO665-21	1
			3	Fujitsu TA08025-B605	2
			3	Fujitsu TA08025-B604	
		-	1	Raycap RDIDC-9181-PF-48	3

Note:

1) Proposed Antenna to be installed on the Proposed Mount Pipe.
2) Proposed Equipment to be installed directly behind the Antenna
3) Proposed Equipment to be installed on Mount.

Table 2 - Documents Provided

Documents	Remarks	Reference	Source
SBA Application	Proposed Loading	Date: $06 / 28 / 2021$	SBA Network Services, LLC.
		Date: $05 / 27 / 2021$	
RFDS		On File	
Mount Analysis	B+T Group	Date: $07 / 23 / 2021$	On

3) ANALYSIS PROCEDURE

3.1) Analysis Method

RISA-3D (Version 21.0.1), a commercially available analysis software package, was used to create a three-dimensional model of the mount and calculate member stresses and deflections for various loading cases. Selected output from the analysis is included in Appendix A.

Manufacturer's drawings were used to create the model.

3.2) Assumptions

1. The mount was built in accordance with the manufacturer's specifications.
2. The mount has been maintained in accordance with the manufacturer's specifications and is free of damage.
3. The configuration of antennas and other appurtenances are as specified in Table 1.
4. All mount components have been assumed to be in sufficient condition to carry their full design capacity for the analysis.
5. Mount areas and weights are determined from field measurements, standard material properties, and/or manufacturer product data.
6. Serviceability with respect to antenna twist, tilt, roll or lateral translation is not checked and is left to the carrier or tower owner to ensure conformance.
7. All prior structural modifications, if any are assumed to be correctly installed and fully effective.
8. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
9. The following material grades were assumed (Unless Noted Otherwise):
a) Connection Bolts : ASTM A325
b) Steel Pipe : ASTM A53 (GR. 35)
c) HSS (Round) : ASTM 500 (GR. B-42)
d) HSS (Rectangular) : ASTM 500 (GR. B-46)
e) Channel : ASTM A36 (GR. 36)
f) Steel Solid Rod : ASTM A36 (GR. 36)
g) Steel Plate : ASTM A36 (GR. 36)
h) Steel Angle : ASTM A36 (GR. 36)
i) UNISTRUT : ASTM A570 (GR. 33)

This analysis may be affected if any assumptions are not valid or have been made in error. $\mathrm{B}+\mathrm{T}$ Group should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Notes	Component	Elevation (ft.)	\% Capacity	Pass / Fail
-	Face Horizontals	155	26.1	Pass
-	Support Arms	155	30.7	Pass
-	Diagonals	155	49.3	Pass
-	Connection Plates	155	25.6	Pass
-	Verticals	155	47.7	Pass
-	Tiebacks	155	29.8	Pass
-	Mount Pipes	155	29.2	Pass

5) RECOMMENDATIONS

The Commscope sector mount Part\# MTC3975083 has sufficient capacity to carry the proposed loads and is in compliance with the ANSI/TIA-222-G standard for the proposed loading. (Refer to the RISA output for the specific members).

APPENDIX A

(RISA-3D Output)

Loads: BLC 3, 90 Wind - No Ice Envelope Only Solution

TRISA	B+T Group	MA12227-A - Truro	SK-6
	MSP		Oct 27, 2023 at 05:14 PM
	149562.005.01.0001		149562_005_01_0001_Truro...

\qquad

Node Coordinates

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
1	1	-4	-2.354167	2.796875	
2	2	4	-2.354167	2.796875	
3	3	-4	0.145833	2.796875	
4	4	4	0.145833	2.796875	
5	5	0.467947	0	0.771833	
6	6	0.385368	0	0.677994	
7	7	2.091999	0	2.61733	
8	8	2.00942	0	2.523491	
9	9	2.332579	0	2.890714	
10	10	2.25	0.145833	2.796875	
11	11	2.25	0	2.796875	
12	12	0	0	0.24008	
13	13	-0.467947	0	0.771833	
14	14	-0.385368	0	0.677994	
15	15	-2.091999	0	2.61733	
16	16	-2.00942	0	2.523491	
17	17	-2.332579	0	2.890714	
18	18	-2.25	0.145833	2.796875	
19	19	-2.25	0	2.796875	
20	20	0.467947	-2.5	0.771833	
21	21	0.385368	-2.5	0.677994	
22	22	2.091999	-2.5	2.61733	
23	23	2.00942	-2.5	2.523491	
24	24	2.332579	-2.5	2.890714	
25	25	2.25	-2.354167	2.796875	
26	26	2.25	-2.5	2.796875	
27	27	0	-2.5	0.24008	
28	28	-0.467947	-2.5	0.771833	
29	29	-0.385368	-2.5	0.677994	
30	30	-2.091999	-2.5	2.61733	
31	31	-2.00942	-2.5	2.523491	
32	32	-2.332579	-2.5	2.890714	
33	33	-2.25	-2.354167	2.796875	
34	34	-2.25	-2.5	2.796875	
35	35	0.430236	0	0.72898	
36	36	2.047131	-2.5	2.566344	
37	37	2.047131	0	2.566344	
38	38	0.430236	-2.5	0.72898	
39	39	-0.430236	0	0.72898	
40	40	-2.047131	-2.5	2.566344	
41	41	-2.047131	0	2.566344	
42	42	-0.430236	-2.5	0.72898	
43	43	0	0.145833	2.796875	
44	44	0	0.145833	3.078125	
45	45	0	-2.354167	2.796875	
46	46	0	-2.354167	3.078125	
47	47	0	2.895833	3.078125	
48	48	0	-5.104167	3.078125	
49	49	3.666667	0.145833	2.796875	
50	50	3.666667	0.145833	3.078125	
51	51	3.666667	-2.354167	2.796875	
52	52	3.666667	-2.354167	3.078125	
53	53	3.666667	2.895833	3.078125	
54	54	3.666667	-5.104167	3.078125	
55	55	-3.666667	0.145833	2.796875	

	CHEK C	any $: B+T$ mber $:$ NS Name : MA	$0001 .$ ruro		$\begin{aligned} & \text { 10/27/2023 } \\ & \text { 5:15:23 PM } \\ & \text { Checked By : } \end{aligned}$
Node Coordinates (Continued)					
	abel	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
56	56	-3.666667	0.145833	3.078125	
57	57	-3.666667	-2.354167	2.796875	
58	58	-3.666667	-2.354167	3.078125	
59	59	-3.666667	2.895833	3.078125	
60	60	-3.666667	-5.104167	3.078125	
61	61	0	0	0	
62	62	-2.75	0.145833	2.796875	
63	63	-4.275	0.145833	-7.404517	
64	64	4.275	0	-7.404517	
65	65	-4.275	0	-7.404517	

Node Boundary Conditions

Node Label		X $[\mathrm{k} / \mathrm{in}]$							Z $\mathrm{k} / \mathrm{k} / \mathrm{in}]$		X Rot $[\mathrm{k}-\mathrm{ft} / \mathrm{rad}]$	Z Rot $[\mathrm{k}-\mathrm{ft} / \mathrm{rad}]$
1	12	Reaction	Reaction	Reaction	Reaction	Reaction						
2	27	Reaction	Reaction	Reaction	Reaction	Reaction						
3	63	Reaction	Reaction	Reaction								

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1 ${ }^{50} \mathrm{~F}^{-1}$]	Density [k/ft ${ }^{3}$]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.4	65	1.3
8	A529 Gr. 50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
9	A500 Gr. 42	29000	11154	0.3	0.65	0.49	42	1.4	58	1.3
10	A500 Gr. 46	29000	11154	0.3	0.65	0.49	46	1.4	58	1.3
11	A500 Gr.C	29000	11154	0.3	0.65	0.49	46	1.4	62	1.3

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design Rule Area [in $\left.{ }^{2}\right]$ lyy [in $\left.{ }^{4}\right]$ Izz [in $\left.{ }^{4}\right] \mathrm{J}\left[\mathrm{in}^{4}\right]$				
1	MF-H1	HSS2.875X0.203	Beam	HSS Pipe	A500 Gr.C	Typical	1.59	1.45	1.45	2.89
2	MF- SA1	1.9"ODX0.12"	Beam	Pipe	A500 Gr.B RND	Typical	0.671	0.267	0.267	0.534
3	MF-D1	SR 1/2"	VBrace	BAR	A529 Gr. 50	Typical	0.196	0.003	0.003	0.006
4	MF-CP1	PL5/8X3.5	Beam	RECT	A572 Gr. 50	Typical	2.205	0.073	2.251	0.259
5	MF-V1	0.63"SR	Column	BAR	A529 Gr. 50	Typical	0.312	0.008	0.008	0.015
6	MF-CP2	PL5/8X4.25	Beam	RECT	A572 Gr. 50	Typical	2.656	0.086	3.998	0.314
7	Tieback	PIPE2.38X0.12	Beam	Pipe	A500 Gr.C	Typical	0.852	0.545	0.545	1.091
8	MF-P1	PIPE2.875X0.12	Column	Pipe	A500 Gr.C	Typical	1.039	0.987	0.987	1.975

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
1	1	1	2		MF-H1	Beam	HSS Pipe	A500 Gr.C	Typical
2	2	3	4		MF-H1	Beam	HSS Pipe	A500 Gr.C	Typical
3	3	12	5	90	MF-CP1	Beam	RECT	A572 Gr. 50	Typical
4	4	6	7		MF-SA1	Beam	Pipe	A500 Gr.B RND	Typical
5	5	8	9	90	MF-CP2	Beam	RECT	A572 Gr. 50	Typical
6	6	10	11	90	RIGID	None	None	RIGID	Typical

\qquad

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
7	7	12	13	90	MF-CP1	Beam	RECT	A572 Gr. 50	Typical
8	8	14	15		MF- SA1	Beam	Pipe	A500 Gr.B RND	Typical
9	9	16	17	90	MF-CP2	Beam	RECT	A572 Gr. 50	Typical
10	10	18	19	90	RIGID	None	None	RIGID	Typical
11	11	27	20	90	MF-CP1	Beam	RECT	A572 Gr. 50	Typical
12	12	21	22		MF- SA1	Beam	Pipe	A500 Gr.B RND	Typical
13	13	23	24	90	MF-CP2	Beam	RECT	A572 Gr. 50	Typical
14	14	25	26	90	RIGID	None	None	RIGID	Typical
15	15	27	28	90	MF-CP1	Beam	RECT	A572 Gr. 50	Typical
16	16	29	30		MF- SA1	Beam	Pipe	A500 Gr.B RND	Typical
17	17	31	32	90	MF-CP2	Beam	RECT	A572 Gr. 50	Typical
18	18	33	34	90	RIGID	None	None	RIGID	Typical
19	19	37	36		MF-V1	Column	BAR	A529 Gr. 50	Typical
20	20	35	38		MF-V1	Column	BAR	A529 Gr. 50	Typical
21	21	35	36		MF-D1	VBrace	BAR	A529 Gr. 50	Typical
22	22	37	38		MF-D1	VBrace	BAR	A529 Gr. 50	Typical
23	23	41	40		MF-V1	Column	BAR	A529 Gr. 50	Typical
24	24	39	42		MF-V1	Column	BAR	A529 Gr. 50	Typical
25	25	39	40		MF-D1	VBrace	BAR	A529 Gr. 50	Typical
26	26	41	42		MF-D1	VBrace	BAR	A529 Gr. 50	Typical
27	27	43	44	90	RIGID	None	None	RIGID	Typical
28	28	45	46	90	RIGID	None	None	RIGID	Typical
29	29	47	48		MF-P1	Column	Pipe	A500 Gr.C	Typical
30	30	49	50	90	RIGID	None	None	RIGID	Typical
31	31	51	52	90	RIGID	None	None	RIGID	Typical
32	32	53	54		MF-P1	Column	Pipe	A500 Gr.C	Typical
33	33	55	56	90	RIGID	None	None	RIGID	Typical
34	34	57	58	90	RIGID	None	None	RIGID	Typical
35	35	59	60		MF-P1	Column	Pipe	A500 Gr.C	Typical
36	36	62	63		Tieback	Beam	Pipe	A500 Gr.C	Typical

Member Advanced Data

	Label	I Release	T/C Only	Physical	Deflection Ratio Options	Seismic DR
1	1			Yes	N/A	None
2	2			Yes	N/A	None
3	3			Yes	N/A	None
4	4			Yes	N/A	None
5	5			Yes	N/A	None
6	6	0000XO		Yes	** NA **	None
7	7			Yes	N/A	None
8	8			Yes	N/A	None
9	9			Yes	N/A	None
10	10	0000XO		Yes	** NA **	None
11	11			Yes	N/A	None
12	12			Yes	N/A	None
13	13			Yes	N/A	None
14	14	0000X0		Yes	** NA **	None
15	15			Yes	N/A	None
16	16			Yes	N/A	None
17	17			Yes	N/A	None
18	18	0000X0		Yes	** NA **	None
19	19			Yes	** NA **	None
20	20			Yes	** NA **	None
21	21			Yes	** NA **	None
22	22		Euler Buckling	Yes	** NA **	None

Hot Rolled Steel Design Parameters

	Label	Shape	Length [ft]	Lcomp top [ft]	Channel Conn.	a [ft]	Function
1	1	MF-H1	8	Lbyy	N/A	N/A	Lateral
2	2	MF-H1	8	Lbyy	N/A	N/A	Lateral
3	3	MF-CP1	0.708	Lbyy	N/A	N/A	Lateral
4	4	MF-SA1	2.583	Lbyy	N/A	N/A	Lateral
5	5	MF-CP2	0.489	Lbyy	N/A	N/A	Lateral
6	7	MF-CP1	0.708	Lbyy	N/A	N/A	Lateral
7	8	MF-SA1	2.583	Lbyy	N/A	N/A	Lateral
8	9	MF-CP2	0.489	Lbyy	N/A	N/A	Lateral
9	11	MF-CP1	0.708	Lbyy	N/A	N/A	Lateral
10	12	MF-SA1	2.583	Lbyy	N/A	N/A	Lateral
11	13	MF-CP2	0.489	Lbyy	N/A	N/A	Lateral
12	15	MF-CP1	0.708	Lbyy	N/A	N/A	Lateral
13	16	MF-SA1	2.583	Lbyy	N/A	N/A	Lateral
14	17	MF-CP2	0.489	Lbyy	N/A	N/A	Lateral
15	19	MF-V1	2.5	Lbyy	N/A	N/A	Lateral
16	20	MF-V1	2.5	Lbyy	N/A	N/A	Lateral
17	21	MF-D1	3.499	Lbyy	N/A	N/A	Lateral
18	22	MF-D1	3.499	Lbyy	N/A	N/A	Lateral
19	23	MF-V1	2.5	Lbyy	N/A	N/A	Lateral
20	24	MF-V1	2.5	Lbyy	N/A	N/A	Lateral
21	25	MF-D1	3.499	Lbyy	N/A	N/A	Lateral
22	26	MF-D1	3.499	Lbyy	N/A	N/A	Lateral
23	29	MF-P1	8	Lbyy	N/A	N/A	Lateral
24	32	MF-P1	8	Lbyy	N/A	N/A	Lateral
25	35	MF-P1	8	Lbyy	N/A	N/A	Lateral
26	36	Tieback	10.315	Lbyy	N/A	N/A	Lateral

Member Point Loads (BLC 1 : Dead)

Member Label		Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	Location [(ft, \%)]
1	32	Y	-0.032	$\% 15$
2	32	Y	-0.032	$\% 85$
3	32	Y	-0.075	$\% 20$
4	32	Y	-0.064	$\% 50$
5	32	Y	0	0
6	8	Y	-0.022	$\% 50$
7	8	0	0	

Member Point Loads (BLC 1 : Dead) (Continued)

Member Label		Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	0
8	8	Y	0	0
9	8	Y	0	0
10	8	Y	0	0

Member Point Loads (BLC 2:0 Wind - No Ice)

Member Point Loads (BLC 3:90 Wind - No Ice)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, \%)]
1	32	X	-0.103	\%15
2	32	X	-0.103	\%85
3	32	X	-0.049	\%20
4	32	X	-0.043	\%50
5	32	X	0	0
6	8	X	-0.047	\%50
7	8	X	0	0
8	8	X	0	0
9	8	X	0	0
10	8	X	0	0

Member Point Loads (BLC 4:0 Wind - Ice)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, \%)]
1	32	Z	-0.055	\%15
2	32	Z	-0.055	\%85
3	32	Z	-0.022	\%20
4	32	Z	-0.022	\%50
5	32	Z	0	0
6	8	Z	-0.022	\%50
7	8	Z	0	0
8	8	Z	0	0
9	8	Z	0	0
10	8	Z	0	0

Member Point Loads (BLC 5:90 Wind - Ice)

Member Label							Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$		Location [(ft, \%)]
1	32	X	-0.028	$\% 15$						
2	32	X	-0.028	$\% 85$						
3	32	X	-0.015	$\% 20$						
4	32	X	-0.014	$\% 50$						
5	32	0	0							

\qquad
ANEMETSCHEK COMPANY

Member Point Loads (BLC 5:90 Wind - Ice) (Continued)

	Member Label	Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	Location [(ft, \%)]
6	8	X	-0.015	$\% 50$
7	8	X	0	0
8	8	X	0	0
9	8	X	0	0
10	8	X	0	0

Member Point Loads (BLC 6:0 Wind - Service)

	Member Label	Direction	Magnitude [k , k -ft]	Location [(ft, \%)]
1	32	Z	-0.018	\%15
2	32	Z	-0.018	\%85
3	32	Z	-0.005	\%20
4	32	Z	-0.005	\%50
5	32	Z	0	0
6	8	Z	-0.006	\%50
7	8	Z	0	0
8	8	Z	0	0
9	8	Z	0	0
10	8	Z	0	0

Member Point Loads (BLC 7:90 Wind - Service)

Member Label		Mirection	Magnitude [k, $\mathrm{k}-\mathrm{ft}]$	Location [(ft, \%)]
1	32	X	-0.007	$\% 15$
2	32	X	-0.007	$\% 85$
3	32	X	-0.003	$\% 20$
4	32	X	-0.003	$\% 50$
5	32	X	0	0
6	8	X	-0.003	$\% 50$
7	8	X	0	0
8	8	X	0	0
9	8	0	0	
10	8		0	0

Member Point Loads (BLC 8 : Ice)

Member Label		Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$		Location [(ft, \%)]
1	32	Y	-0.19	$\% 15$
2	32	Y	-0.19	$\% 85$
3	32	Y	-0.069	$\% 20$
4	32	Y	-0.067	$\% 50$
5	32	Y	0	0
6	8	Y	-0.07	$\% 50$
7	8	Y	0	0
8	8	Y	0	0
9	8	Y	0	0
10	8	0	0	

Member Point Loads (BLC 13 : Maint LL 1)

Member Label								Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	Location [(ft, \%)]
1	8	Y	-0.25	$\% 50$						

\qquad

Member Point Loads (BLC 14 : Maint LL 2)								
Member Label						Direction	Magnitude [k, k-ft]	Location [(ft, \%)]
1								

Member Point Loads (BLC 15: Maint LL 3)
Member Label Direction Magnitude [k, k-ft] Location [(ft, \%)] 1 4 Y -0.25

Member Point Loads (BLC 16 : Maint LL 4)

Member Label			
1	12	Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$

Member Point Loads (BLC 17 : Maint LL 5)

Member Label								Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	Location [(ft, \%)]
1	2	Y	-0.25							

Member Point Loads (BLC 18 : Maint LL 6)

Member Label								Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	Location $[(\mathrm{ft}, \%)]$
1	1	Y	-0.25							

Member Distributed Loads (BLC 2: 0 Wind - No Ice)

1	1	Z	-0.012	-0.012	0	\%100
2	2	Z	-0.012	-0.012	0	\%100
3	3	Z	-0.003	-0.003	0	\%100
4	4	Z	-0.007	-0.007	0	\%100
5	5	Z	-0.003	-0.003	0	\%100
6	7	Z	-0.003	-0.003	0	\%100
7	8	Z	-0.007	-0.007	0	\%100
8	9	Z	-0.003	-0.003	0	\%100
9	11	Z	-0.003	-0.003	0	\%100
10	12	Z	-0.007	-0.007	0	\%100
11	13	Z	-0.003	-0.003	0	\%100
12	15	Z	-0.003	-0.003	0	\%100
13	16	Z	-0.007	-0.007	0	\%100
14	17	Z	-0.003	-0.003	0	\%100
15	19	Z	-0.003	-0.003	0	\%100
16	20	Z	-0.003	-0.003	0	\%100
17	21	Z	-0.002	-0.002	0	\%100
18	22	Z	-0.002	-0.002	0	\%100
19	23	Z	-0.003	-0.003	0	\%100
20	24	Z	-0.003	-0.003	0	\%100
21	25	Z	-0.002	-0.002	0	\%100
22	26	Z	-0.002	-0.002	0	\%100
23	29	Z	-0.012	-0.012	0	\%100
24	32	Z	-0.012	-0.012	0	\%100
25	35	Z	-0.012	-0.012	0	\%100
26	36	Z	-0.01	-0.01	0	\%100

\qquad

Member Distributed Loads (BLC 4:0 Wind - Ice)

Member Label Direction Start Magnitude [k/ft, F, ksf, k-ft/ft]				End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, \%)]	End Location [(ft, \%)]
1	1	Z	-0.003	-0.003	0	\%100
2	2	Z	-0.003	-0.003	0	\%100
3	3	Z	-0.007	-0.007	0	\%100
4	4	Z	-0.002	-0.002	0	\%100
5	5	Z	-0.007	-0.007	0	\%100
6	7	Z	-0.007	-0.007	0	\%100
7	8	Z	-0.002	-0.002	0	\%100
8	9	Z	-0.007	-0.007	0	\%100
9	11	Z	-0.007	-0.007	0	\%100
10	12	Z	-0.002	-0.002	0	\%100
11	13	Z	-0.007	-0.007	0	\%100
12	15	Z	-0.007	-0.007	0	\%100
13	16	Z	-0.002	-0.002	0	\%100
14	17	Z	-0.007	-0.007	0	\%100
15	19	Z	-0.003	-0.003	0	\%100
16	20	Z	-0.003	-0.003	0	\%100
17	21	Z	-0.001	-0.001	0	\%100
18	22	Z	-0.001	-0.001	0	\%100
19	23	Z	-0.003	-0.003	0	\%100
20	24	Z	-0.003	-0.003	0	\%100
21	25	Z	-0.001	-0.001	0	\%100
22	26	Z	-0.001	-0.001	0	\%100
23	29	Z	-0.003	-0.003	0	\%100
24	32	Z	-0.003	-0.003	0	\%100
25	35	Z	-0.003	-0.003	0	\%100

\qquad

Member Distributed Loads (BLC 4:0 Wind - Ice) (Continued)

Member Label Direction Start Magnitude [k/ft, F, ksf, k-ft/ft] End Magnitude [k/ft, F, ksf, k-ft/ft] Start Location [(ft, \%)] End Location [(ft, \%)] 26 \qquad 36 Z -0.002
-0.002
0 \qquad | \%100

Member Distributed Loads (BLC 5:90 Wind - Ice)

Member Label Direction Start Magnitude [k/ft, F, ksf, k-ft/ft] End Magnitude [k/ft, F, ksf, k-ft/ft] Start Location [(ft, \%)] End Location [(ft, \%)]

Member Distributed Loads (BLC 6:0 Wind-Service)

			rt Magnitude [k/ft, F,	End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, \%)]	End Location [(ft, \%)]
1	1	Z	-0.0004	-0.0004	0	\%100
2	2	Z	-0.0004	-0.0004	0	\%100
3	3	Z	-0.0002	-0.0002	0	\%100
4	4	Z	-0.0003	-0.0003	0	\%100
5	5	Z	-0.0002	-0.0002	0	\%100
6	7	Z	-0.0002	-0.0002	0	\%100
7	8	Z	-0.0003	-0.0003	0	\%100
8	9	Z	-0.0002	-0.0002	0	\%100
9	11	Z	-0.0002	-0.0002	0	\%100
10	12	Z	-0.0003	-0.0003	0	\%100
11	13	Z	-0.0002	-0.0002	0	\%100
12	15	Z	-0.0002	-0.0002	0	\%100
13	16	Z	-0.0003	-0.0003	0	\%100
14	17	Z	-0.0002	-0.0002	0	\%100
15	19	Z	-0.0001	-0.0001	0	\%100
16	20	Z	-0.0001	-0.0001	0	\%100
17	21	Z	-0.0001	-0.0001	0	\%100
18	22	Z	-0.0001	-0.0001	0	\%100
19	23	Z	-0.0001	-0.0001	0	\%100
20	24	Z	-0.0001	-0.0001	0	\%100

\qquad

Member Distributed Loads (BLC 6:0 Wind - Service) (Continued)

| Member Label Direction Start Magnitude [k/ft, F, ksf, k-ft/ft] | | | | | | End Magnitude [k/ft, F, ksf, k-ft/ft] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Start Location [(ft, \%)] End Location [(ft, \%)]

Member Distributed Loads (BLC 7 : 90 Wind - Service)

Member Label Direction Start Magnitude [k/ft, F, ksf, k-ft/ft] End Magnitude [k/ft, F, ksf, k-ft/ft] Start Location [(ft, \%)] End Location [(ft, \%)]

Member Distributed Loads (BLC 8 : Ice)

Member Label Direction Start Magnitude [k/ft, F, ksf, k-ft/ft] End Magnitude [k/ft, F, ksf, k-ft/ft] Start Location [(ft, \%)] End Location [(ft, \%)]					
1	1	Y	-0.014	-0.014	0
2	2	Y	-0.014	-0.014	0
3	3	Y	-0.015	-0.015	0
4	4	Y	-0.011	-0.011	0
5	5	-0.017	-0.017	0	$\% 100$
6	7	Y	-0.015	-0.015	0
7	8	Y	-0.011	-0.011	0
8	9	Y	-0.017	-0.017	0
9	11	Y	-0.015	-0.015	0
10	12	Y	-0.011	-0.011	0
11	13	Y	-0.017	-0.017	0
12	15	Y	-0.015	-0.015	0
13	16	Y	-0.011	-0.011	0
14	17	Y	-0.017	-0.017	0
15	19	Y	-0.008	-0.008	0

\qquad
A NEMETSCHEK COMPANY

Member Distributed Loads (BLC 8 : Ice) (Continued)

Member Label Direction Start Magnitude [k/ft, F, ksf, k-ft/ft] End Magnitude [k/ft, F, ksf, k-ft/ft] Start Location [(ft, \%)] End Location [(ft, \%)]						
16	20	Y	-0.008	-0.008	0	\%100
17	21	Y	-0.007	-0.007	0	\%100
18	22	Y	-0.007	-0.007	0	\%100
19	23	Y	-0.008	-0.008	0	\%100
20	24	Y	-0.008	-0.008	0	\%100
21	25	Y	-0.007	-0.007	0	\%100
22	26	Y	-0.007	-0.007	0	\%100
23	29	Y	-0.014	-0.014	0	\%100
24	32	Y	-0.014	-0.014	0	\%100
25	35	Y	-0.014	-0.014	0	\%100
26	36	Y	-0.012	-0.012	0	\%100

Member Area Loads

No Data to Print.

Node Loads and Enforced Displacements (BLC 9 : Live Load a)

Node Label		L, D, M	Direction	Magnitude $\left[(k, k-\mathrm{ft}),(\right.$ in, rad $\left.),\left(k^{*} s^{2} / \mathrm{ft}, \mathrm{k}^{*} \mathrm{~s}^{2 *} \mathrm{ft}\right)\right]$
1	57	L	Y	-0.5

Node Loads and Enforced Displacements (BLC 10 : Live Load b)

Node Label		L, D, M	Direction	Magnitude $\left[(k, k-f t),(\right.$ in,$\left.r a d),\left(k^{*} s^{2} / \mathrm{ft}, \mathrm{k}^{*} \mathrm{~s}^{2 *} \mathrm{ft}\right)\right]$
1	45	L	Y	-0.5

Node Loads and Enforced Displacements (BLC 11 : Live Load c)

Node Label		L, D, M	Direction	Magnitude $\left[(k, k-f t),(\right.$ in, rad $\left.),\left(k^{*} s^{2} / \mathrm{ft}, \mathrm{k}^{*} \mathrm{~s}^{2 *} \mathrm{ft}\right)\right]$
1	51	L	Y	-0.5

Basic Load Cases

	BLC Description	Category	Y Gravity	Nodal	Point	Distributed
1	Dead	DL	-1		10	
2	0 Wind - No Ice	WLZ			10	26
3	90 Wind - No Ice	WLX			10	26
4	0 Wind - Ice	WLZ			10	26
5	90 Wind - Ice	WLX			10	26
6	0 Wind - Service	WLZ			10	26
7	90 Wind - Service	WLX			10	26
8	Ice	OL1			10	26
9	Live Load a	LL		1		
10	Live Load b	LL		1		
11	Live Load c	LL		1		
12	Live Load d	LL				
13	Maint LL 1	LL			1	
14	Maint LL 2	LL			1	
15	Maint LL 3	LL			1	
16	Maint LL 4	LL			1	
17	Maint LL 5	LL			1	
18	Maint LL 6	LL			1	

\qquad
Model Name: MA12227-A - Truro
\qquad

Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4 Dead	Yes	Y	1	1.4						
2	0.9 D + 1.6-0 W	Yes	Y	1	0.9	2	1.6				
3	$0.9 \mathrm{D}+1.6-30 \mathrm{~W}$	Yes	Y	1	0.9	2	1.386	3	0.8		
4	$0.9 \mathrm{D}+1.6-60 \mathrm{~W}$	Yes	Y	1	0.9	3	1.386	2	0.8		
5	0.9 D + 1.6-90 W	Yes	Y	1	0.9	3	1.6				
6	0.9 D + 1.6-120 W	Yes	Y	1	0.9	3	1.386	2	-0.8		
7	0.9 D + 1.6-150 W	Yes	Y	1	0.9	2	-1.386	3	0.8		
8	$0.9 \mathrm{D}+1.6-180 \mathrm{~W}$	Yes	Y	1	0.9	2	-1.6				
9	0.9 D + 1.6-210 W	Yes	Y	1	0.9	2	-1.386	3	-0.8		
10	0.9 D + 1.6-240 W	Yes	Y	1	0.9	3	-1.386	2	-0.8		
11	$0.9 \mathrm{D}+1.6-270 \mathrm{~W}$	Yes	Y	1	0.9	3	-1.6				
12	0.9 D + 1.6-300 W	Yes	Y	1	0.9	3	-1.386	2	0.8		
13	0.9 D + 1.6-330 W	Yes	Y	1	0.9	2	1.386	3	-0.8		
14	1.2 D + 1.6-0 W	Yes	Y	1	1.2	2	1.6				
15	1.2 D + 1.6-30 W	Yes	Y	1	1.2	2	1.386	3	0.8		
16	1.2 D + 1.6-60 W	Yes	Y	1	1.2	3	1.386	2	0.8		
17	1.2 D + 1.6-90 W	Yes	Y	1	1.2	3	1.6				
18	1.2 D + 1.6-120 W	Yes	Y	1	1.2	3	1.386	2	-0.8		
19	1.2 D + 1.6-150 W	Yes	Y	1	1.2	2	-1.386	3	0.8		
20	1.2 D + 1.6-180 W	Yes	Y	1	1.2	2	-1.6				
21	1.2 D + 1.6-210 W	Yes	Y	1	1.2	2	-1.386	3	-0.8		
22	1.2 D + 1.6-240 W	Yes	Y	1	1.2	3	-1.386	2	-0.8		
23	1.2 D + 1.6-270 W	Yes	Y	1	1.2	3	-1.6				
24	1.2 D + 1.6-300 W	Yes	Y	1	1.2	3	-1.386	2	0.8		
25	$1.2 \mathrm{D}+1.6-330 \mathrm{~W}$	Yes	Y	1	1.2	2	1.386	3	-0.8		
26	0.9 D + 1.6-0 W/Ice	Yes	Y	1	0.9	4	1.6			8	1
27	0.9 D + 1.6-30 W/Ice	Yes	Y	1	0.9	4	1.386	5	0.8	8	1
28	0.9 D + 1.6-60 W/Ice	Yes	Y	1	0.9	5	1.386	4	0.8	8	1
29	0.9 D + 1.6-90 W/Ice	Yes	Y	1	0.9	5	1.6			8	1
30	0.9 D + 1.6-120 W/Ice	Yes	Y	1	0.9	5	1.386	4	-0.8	8	1
31	0.9 D + 1.6-150 W/Ice	Yes	Y	1	0.9	4	-1.386	5	0.8	8	1
32	0.9 D + 1.6-180 W/Ice	Yes	Y	1	0.9	4	-1.6			8	1
33	0.9 D + 1.6-210 W/Ice	Yes	Y	1	0.9	4	-1.386	5	-0.8	8	1
34	0.9 D + 1.6-240 W/Ice	Yes	Y	1	0.9	5	-1.386	4	-0.8	8	1
35	0.9 D + 1.6-270 W/Ice	Yes	Y	1	0.9	5	-1.6			8	1
36	0.9 D + 1.6-300 W/Ice	Yes	Y	1	0.9	5	-1.386	4	0.8	8	1
37	0.9 D + 1.6-330 W/Ice	Yes	Y	1	0.9	4	1.386	5	-0.8	8	1
38	1.2 D + 1.0-0 W/Ice	Yes	Y	1	1.2	4	1			8	1
39	1.2 D + 1.0-30 W/Ice	Yes	Y	1	1.2	4	0.866	5	0.5	8	1
40	1.2 D + 1.0-60 W/Ice	Yes	Y	1	1.2	5	0.866	4	0.5	8	1
41	1.2 D + 1.0-90 W/Ice	Yes	Y	1	1.2	5	1			8	1
42	1.2 D + 1.0-120 W/Ice	Yes	Y	1	1.2	5	0.866	4	-0.5	8	1
43	1.2 D + 1.0-150 W/Ice	Yes	Y	1	1.2	4	-0.866	5	0.5	8	1
44	1.2 D + 1.0-180 W/Ice	Yes	Y	1	1.2	4	-1			8	1
45	1.2 D + 1.0-210 W/Ice	Yes	Y	1	1.2	4	-0.866	5	-0.5	8	1
46	1.2 D + 1.0-240 W/Ice	Yes	Y	1	1.2	5	-0.866	4	-0.5	8	1
47	1.2 D + 1.0-270 W/Ice	Yes	Y	1	1.2	5	-1			8	1
48	1.2 D + 1.0-300 W/Ice	Yes	Y	1	1.2	5	-0.866	4	0.5	8	1
49	1.2 D + 1.0-330 W/Ice	Yes	Y	1	1.2	4	0.866	5	-0.5	8	1
50	1.2 D + 1.5 LL a + Service - 0 W	Yes	Y	1	1.2	6	1			9	1.5
51	1.2 D + 1.5 LL a + Service - 30 W	Yes	Y	1	1.2	6	0.866	7	0.5	9	1.5
52	1.2 D + 1.5 LL a + Service - 60 W	Yes	Y	1	1.2	7	0.866	6	0.5	9	1.5
53	1.2 D + 1.5 LL a + Service - 90 W	Yes	Y	1	1.2	7	1			9	1.5
54	1.2 D + 1.5 LL a + Service - 120 W	Yes	Y	1	1.2	7	0.866	6	-0.5	9	1.5
55	1.2 D + 1.5 LL a + Service - 150 W	Yes	Y	1	1.2	6	-0.866	7	0.5	9	1.5

\qquad

Load Combinations (Continued)

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
56	1.2 D + 1.5 LL a + Service - 180 W	Yes	Y	1	1.2	6	-1			9	1.5
57	1.2 D + 1.5 LL a + Service - 210 W	Yes	Y	1	1.2	6	-0.866	7	-0.5	9	1.5
58	1.2 D + 1.5 LL a + Service - 240 W	Yes	Y	1	1.2	7	-0.866	6	-0.5	9	1.5
59	1.2 D + 1.5 LL a + Service - 270 W	Yes	Y	1	1.2	7	-1			9	1.5
60	1.2 D + 1.5 LL a + Service - 300 W	Yes	Y	1	1.2	7	-0.866	6	0.5	9	1.5
61	1.2 D + 1.5 LL a + Service - 330 W	Yes	Y	1	1.2	6	0.866	7	-0.5	9	1.5
62	1.2 D + 1.5 LL b + Service - 0 W	Yes	Y	1	1.2	6	1			10	1.5
63	1.2 D + 1.5 LL b + Service - 30 W	Yes	Y	1	1.2	6	0.866	7	0.5	10	1.5
64	1.2 D + 1.5 LL b + Service - 60 W	Yes	Y	1	1.2	7	0.866	6	0.5	10	1.5
65	1.2 D + 1.5 LL b + Service - 90 W	Yes	Y	1	1.2	7	1			10	1.5
66	1.2 D + 1.5 LL b + Service - 120 W	Yes	Y	1	1.2	7	0.866	6	-0.5	10	1.5
67	1.2 D + 1.5 LL b + Service - 150 W	Yes	Y	1	1.2	6	-0.866	7	0.5	10	1.5
68	1.2 D + 1.5 LL b + Service - 180 W	Yes	Y	1	1.2	6	-1			10	1.5
69	1.2 D + 1.5 LL b + Service - 210 W	Yes	Y	1	1.2	6	-0.866	7	-0.5	10	1.5
70	1.2 D + 1.5 LL b + Service - 240 W	Yes	Y	1	1.2	7	-0.866	6	-0.5	10	1.5
71	1.2 D + 1.5 LL b + Service - 270 W	Yes	Y	1	1.2	7	-1			10	1.5
72	1.2 D + 1.5 LL b + Service - 300 W	Yes	Y	1	1.2	7	-0.866	6	0.5	10	1.5
73	1.2 D + 1.5 LL b + Service - 330 W	Yes	Y	1	1.2	6	0.866	7	-0.5	10	1.5
74	1.2 D + 1.5 LL c + Service - 0 W	Yes	Y	1	1.2	6	1			11	1.5
75	1.2 D + 1.5 LL c + Service - 30 W	Yes	Y	1	1.2	6	0.866	7	0.5	11	1.5
76	1.2 D + 1.5 LL c + Service - 60 W	Yes	Y	1	1.2	7	0.866	6	0.5	11	1.5
77	1.2 D + 1.5 LL c + Service - 90 W	Yes	Y	1	1.2	7	1			11	1.5
78	1.2 D + 1.5 LL c + Service - 120 W	Yes	Y	1	1.2	7	0.866	6	-0.5	11	1.5
79	1.2 D + 1.5 LL c + Service - 150 W	Yes	Y	1	1.2	6	-0.866	7	0.5	11	1.5
80	1.2 D + 1.5 LL c + Service - 180 W	Yes	Y	1	1.2	6	-1			11	1.5
81	1.2 D + 1.5 LL c + Service - 210 W	Yes	Y	1	1.2	6	-0.866	7	-0.5	11	1.5
82	1.2 D + 1.5 LL c + Service - 240 W	Yes	Y	1	1.2	7	-0.866	6	-0.5	11	1.5
83	1.2 D + 1.5 LL c + Service - 270 W	Yes	Y	1	1.2	7	-1			11	1.5
84	1.2 D + 1.5 LL c + Service - 300 W	Yes	Y	1	1.2	7	-0.866	6	0.5	11	1.5
85	1.2 D + 1.5 LL c + Service - 330 W	Yes	Y	1	1.2	6	0.866	7	-0.5	11	1.5
86	1.2 D + 1.5 LL d + Service - 0 W	Yes	Y	1	1.2	6	1			12	1.5
87	1.2 D + 1.5 LL d + Service - 30 W	Yes	Y	1	1.2	6	0.866	7	0.5	12	1.5
88	1.2 D + 1.5 LL d + Service - 60 W	Yes	Y	1	1.2	7	0.866	6	0.5	12	1.5
89	1.2 D + 1.5 LL d + Service - 90 W	Yes	Y	1	1.2	7	1			12	1.5
90	1.2 D + 1.5 LL d + Service - 120 W	Yes	Y	1	1.2	7	0.866	6	-0.5	12	1.5
91	1.2 D + 1.5 LL d + Service - 150 W	Yes	Y	1	1.2	6	-0.866	7	0.5	12	1.5
92	1.2 D + 1.5 LL d + Service - 180 W	Yes	Y	1	1.2	6	-1			12	1.5
93	1.2 D + 1.5 LL d + Service - 210 W	Yes	Y	1	1.2	6	-0.866	7	-0.5	12	1.5
94	1.2 D + 1.5 LL d + Service - 240 W	Yes	Y	1	1.2	7	-0.866	6	-0.5	12	1.5
95	1.2 D + 1.5 LL d + Service - 270 W	Yes	Y	1	1.2	7	-1			12	1.5
96	1.2 D + 1.5 LL d + Service - 300 W	Yes	Y	1	1.2	7	-0.866	6	0.5	12	1.5
97	1.2 D + 1.5 LL d + Service - 330 W	Yes	Y	1	1.2	6	0.866	7	-0.5	12	1.5
98	1.2 D + 1.5 LL Maint (1)	Yes	Y	1	1.2					13	1.5
99	1.2 D + 1.5 LL Maint (2)	Yes	Y	1	1.2					14	1.5
100	1.2 D + 1.5 LL Maint (3)	Yes	Y	1	1.2					15	1.5
101	1.2 D + 1.5 LL Maint (4)	Yes	Y	1	1.2					16	1.5
102	1.2 D + 1.5 LL Maint (5)	Yes	Y	1	1.2					17	1.5
103	1.2 D + 1.5 LL Maint (6)	Yes	Y	1	1.2					18	1.5

Envelope Node Reactions

Node Label			X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
0	12	max	0.706	53	1.145	42	2.702	13	-0.002	7	0	103	0.218	78
1		min	-1.291	83	0.171	12	-3.602	19	-0.333	49	0	1	-0.128	61
2	27	max	1.279	77	1.05	48	1.966	38	0.026	8	0	103	0.191	79
3		min	-0.694	59	0.152	6	-0.287	8	-0.308	38	0	1	-0.117	61

\qquad

Envelope Node Reactions (Continued)

Node Label			X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
4	63	max	0.324	18	0.08	48	1.654	18	0	103	0	103	0	103
5		min	-0.325	24	0.013	7	-1.656	24	0	1	0	1	0	1
6	Totals:	max	1.701	17	2.251	48	2.369	2						
7		min	-1.701	11	0.46	6	-2.369	20						

Envelope AISC 13TH (360-05): LRFD Member Steel Code Checks

APPENDIX B

(Additional Calculations)

ASCE 7 Hazards Report

Address:
No Address at This Location

Standard: ASCE/SEI 7-10 Latitude: 41.985783
Risk Category: III Longitude: -70.041333
Soil Class: D - Stiff Soil Elevation: 29.375566586343556 ft (NAVD 88)

Seismic

Site Soil Class:

Results:

$\mathrm{S}_{\mathrm{s}}:$	0.163
$\mathrm{~S}_{1}:$	0.057
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.26
$\mathrm{~S}_{\mathrm{M} 1}:$	0.137
$\mathrm{~S}_{\mathrm{DS}}:$	0.173

$\mathrm{S}_{\mathrm{D} 1}:$	0.091
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.084
$\mathrm{PGA}_{\mathrm{M}}:$	0.134
$\mathrm{~F}_{\text {PGA }}:$	1.6
$\mathrm{I}_{\mathrm{e}}:$	

Seismic Design Category: B

Data Accessed:

Fri Oct 272023

Date Source:

USGS Seismic Design Maps based on ASCE/SEl 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Ice

Results

Ice Thickness:
Concurrent Temperature:
Gust Speed
Data Source:
Date Accessed:
0.75 in.

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Fri Oct 272023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

PROJECT	$\mathbf{1 4 9 5 6 2 . 0 0 5 . 0 1 . 0 0 0 1} \mathbf{-}$ Truro, MA	KSC			
SUBJECT	Sector- Mount Analysis				
DATE	$\mathbf{1 1 / 0 7 / 2 3}$	PAGE	1	OF	5

INPUT

[REF: ANSI/TIA-222-G2005]

Tower Type	SST		
Tower Height	190	ft	
Mount Elevation	155	ft	
Antenna Elevation	155	ft	
Crest Height	0	ft	
Structure Class	III		[Table 2-1]
Exposure Category	B		[Sec. 2.6.5]
Topography Category	1		[Sec. 2.6.6.2]
Wind Velocity V	115	mph	[Annex B]
Ice wind Velocity $\quad V_{i}$	50	mph	[Annex B]
Service Velocity $\mathrm{V}_{\text {s }}$	30	mph	[Annex B]
Base Ice thickness t_{i}	0.75	in	[Annex B]

ANTENNAS

	Manufacturer	Model	Height (in)	Front Width (in)	Side Width (in)	Weight (lbs)	Shape	Quantity	Location (\%)
Mount Pipe 32									
	JMA WIRELESS	MX08FRO665-21	72.00	20.00	8.00	64.50	Flat	0.5	15
	JMA WIRELESS	MX08FRO665-21	72.00	20.00	8.00	64.50	Flat	0.5	85
	Fujitsu	TA08025-B605	15.75	14.96	9.05	74.95	Flat	1	20
	Fujitsu	TA08025-B604	15.75	14.96	7.87	63.93	Flat	1	50
Mount Pipe 8									
	RAYCAP	RDIDC-9181-PF-48	16.57	14.57	8.15	21.85	Flat	1	50

Mount Pipe

				-	-	,		,	

Mount Pipe

Mount Pipe

					,	,	\square		
\square									

d́sh
5701 SOUTH SANTA FE DRNE
LITLETON, CO 80120

SBA ($)$)

b\&t Engineering, inc.

| |
:---:		DRAWN BY:	CHECKED BY:				
	APPROVED BY:		RMC	BLJ	MOW		
:---:	:---	:---	:---:	:---:			
RFDS REV \#:	0						

PRELIMINARY
DOCUMENTS

SUBMITALS		
Rev	DATE	DESCRIPTION
\wedge	7/28/21	SSSuep for rever
		ssued

\qquad

A\&E PROUECT NUMBER
149562.001 .0

DISH Wireless L.L.C.C.
PROUECT NTFORAATiON
BовоS00593A TRUN DUMP ROAD
TRURO, MA 02666

SHEET TTLE
SURVEY SHEE

3. For grouno bono to stel only coat all surfaces wit an ant-oxidant compouno
4. Do not instal caile grounong kit at a bend and alwars direct ground conouctor
5. Nut w wastie shall be placed on the front side of the grouno bar and bolted on
6. AL Grounoing parts and equrment to ee suppled ano installed ey contractor.
7. THEE CONTRACTTOR SHALL BE RESPONSIBEE FOR INSTALIMG ADOTIONAL GROUNO BAR AS
8. ENSURE THE WRE INSULATON TERMINATON IS WTHIN $1 / 8{ }^{\text {" }}$ of THE EaRREL (No SHINERS).

DISH Wireless LLLC. TEMPLATE VERSION $37-07 / 09 / 2021$

SIIE ACTVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEMING A WRITIEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE STIE YOU MUST
L.L.C. AND TOWER OWNER NOC \& THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.
2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRIT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACLITY SHALL BE CONSIDRED DURING ALL STAGES
OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATON, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALLATONS SHALL OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFCATION, MOUNT REENFORCEMENTS, AND/OR EQUPMENT INSTALAATIONS SHAL
NOT COMPROMISE THE INTEGRITY OR FUNCTONAL USE OF THE SAFETY CLMM OR ANY COMPONENTS OF THE CLIMBING FACIITY ON

 OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.
 IS NOT LIMITED TO, BUILDNG, ELLECTRICALL MECHANICALL FIRE, FLOOD ZONE, ENNIRONMENTAL AND ZONING. AFTER ONSITE AA
ANO COSTRUCTON ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL
IURISOICTONAL REQUREMENTS.
4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMIED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING
PLANS, AND RESCUE PLANS SHALL BE THE RESPONIBLIITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTON OF
 PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless LL.L.C. AND TOWER OWNER STANDARDS, INCLUDING
THE REQURED INVOLVEMENT OF A QUALFIED ENGINEER FOR CLASS IV CONSTRUCTON, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN THE REQUIRED INVOLVEMENT OF A QUALIFED ENGI)
ACCORDANCE WTH ANITTA-322 (LATEST EDTION).
5. ALL SIEE WORK TO COMPLY WTH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION
ACTMTIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSITTA-1019-A-2012 "STANDARD FOR S. ACTVMITIS ON DIIH Wireress LLL.C. AND TOWER OWNER TOWER SIIE AND LITEST VERSION OF ANSI/TTA
INSTALATION, ALTERATION, AND MANTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTESNAS."
6. IF THE SPECIFED EQUPMENT CAN NOT BE INSTALED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
AN ALTIRRNTVE NTALLATON FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDNG WTTH ANY SUCH
CHAGE OF INSTALATION. AN ALTERNATIE INSTALLAA
CHANGE OF INSTALATION.
7. ALL MATERALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLCABLE CODES, REGULTIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES,
REGLLTIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED

9. THE CONTRACTOR SHALL CONTACT UTLITT LOCATING SERVICES INCLUDING PRVATE LOCATES SERVICES PRIOR TO THE START
OF CONSTRUCTION.
 CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR
UTLITIES. COTTRACTOR SHALL PROVDE SAFET TRANING FOR TE WORING CREW. THIS WIL INCLUOE BUT NOT BE LMITED TO A) FALL PROTECTI
PROCEDURES.
11. ALL SITE WORK SHAL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFCCATIONS,
LATEST APPROVED REVIION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULTING WASTE MATERILL, DEBRIS, AND TRASH AT THE COMPLETION OF
THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND THE WORK. IF NECELSAAK
DISPOSED OF LEEALIY.
13. ALL EXISTING INACTVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTLLTIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINED AT POINTS WHEICH WIL NOT INTEREERE WITH
THE EXECUTON OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTLITES.

15. the site shall be graded to cause surface water to flow away from the carrier's equipment and tower areas. 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
APPLCATON.
17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUPMENT OR
DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION ORAWINGS AND/OR PROUECT SPECIFICATIONS
18. CONTRACTOR SHAL MINIMIZE DISTURBANCE TT EXIISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
REQUIRED DURING CONSTRUCTOM, SHALL BE IN CONFORMANCE WTTH THE LOCAL GUDELINES FOR EROSION AND SEDMENT CONTRLL 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY
 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTT
REMOVED FROM THE EXISTING FACLLITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
LOCATON.

GENERAL NOTES

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER.DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER
 WORK DEPICTED WLL BE PERFORMED BY AN EXPERENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE CONOTIION OR ELEMENT IS (OR CAN BE) EXPLICTLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTE CONDITION OR ELEMENT IS (OR CAN BE EXPLICILY SHOON ON THESE DRAWIN.
STANDRD GOOD PRACTICE FOR MISELLAEEOUS WORK NOT EXPLICTLY SHOWN.
THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF
CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS TECHN
SERUENCES, AND PROCOEURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND
 SITE VISTIS BY THE ENGINEER OR HIS REPRESENTAT
OBSERVATIO OF THE FINSHED STRUCTURE ONLY.

NOTES AND DETALL IN THE CONSTRUCTION DRAWINGS SHAL TAKE PRECEDENCE OVER GENERAL NOTES AND TTPICAL DETALLS

 GREATER,
RECORD.
S. SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBLITT OF THE CONTRACTOR TO
 FISCREPANCIES AND/R CONFLCTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFED AS SOON AS Possibe.

7. ALL MATERALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ALL APPLICABLE CODES, REGLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANGES, RULES, AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES
REGULATONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORTY REGAROING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MAT
NECESSARY TO COMPLETE ALL INSTALATONS AS INOICATED ON THE DRAWINGS.
9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WTTH MANUFACTURER'S RECOMMENDATIONS
10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWNGS. THE CONTRACTOR SHALL PROPOSE
AN ALTERNTVE INSTALATION FOR APPROVAL BY THE CARRER AND TOWER OWNER PRIOR TO PROCEEDNG WTH ANY SUCH CHANGE

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERILLS SUCH AS COAXIAL CABLES AND OTHER TTEM
REMOVED FROM THE EXISTING FACLITTY. ANTENNAS REMMVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. 14.
basis. CONtractor shall leave premises in clean condition. trash and debris should be removed from site on a daly

5701 SOUTH SANTA RE DRVI
LITLITON, C Co 80120

b\&t Engineering, inc.

A\&E PROJECT NUMBER
149562.001.01

вовоS00593A TOWN DUMP ROAD
TRURO, MA 02666
\qquad
general notes

CONCRETE. FOUNDATIONS, AND REINFORCING STEEL

1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WTHH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN
AND CONSTRUCTON SPECIFCATION FOR CAST-IN-PLACE CONCRETE.
2. UNLESS NOTED OTHERWIS, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000
pos.
3. ALL CONCRETE SHALL HAVE A MINMUM COMPRESSIVE STRENGTH (f'c) OF 3000 DSi AT 28 DAYS, UNLESS NOTED OTHERWISEE, NO
MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TMM OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD.

4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAN AIR ENTRANING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO bE MAXIMUM WATER-TO-CEMENT RATO (W/C) OF 0.45.
5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, SPLLCES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NNTED OTHERWISE. ALL HOOK SHAL BE
UNLESS NOTED OTHERWISE. YELD STRENGTH (Fy) OF STANARD DEFORMED BARS ARE AS FOLLOWS:
\#4 BARS AND SMALLER 40 ks
\#5 bars and larger 60 ksi
${ }_{\text {6. }}^{6 \text { RAWINGS: }}$
Lolowng minmum concrete cover shall be provided for reinforcing steel unless shown otherwise on

- concrete cast against and permanently exposed to earth 3^{n}
\#6 bars and larger $2^{\prime \prime}$
" \#5 bars and smaller 1-1/2"
- concrete not exposed to earth or weather:
- slab and walls $3 / 4^{\prime \prime}$
- beams and columns $1-1 / 2^{\prime \prime}$

7. A tooled edee or a $3 / 4^{" \prime}$ chamfer shall be provided at all exposed edges of concrete, unless noted otherwise,

ELECTRICAL INSTALATION NOTES:

1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLCCABLE
FEDERL, STATE, AND LOCAL CODES/ORDINANCES.
2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
AND TRIP HAZARS ARE ELIMINATED.
3. WRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
4. all circuits shall be segregated and maintain minimum cable separation as required by the nec.
4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRTERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATIONAL ELECTRICAL CODE.
 CURRENT TO WHCH THEY ARE SUBUECTED, 22,000 AIC MNNMUM. VERIFY AVALLABLE SHORT CIRCUT CURRENT DOES NOT EXCEED THE
RATING OF ELECTRICAL EQUPMENT IN ACCORDANCE WTH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE ROVERNING JURISOICTION.
5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE
LABELED WTH COLOR-CODED INSULATOA OR ELLECTRICAL TAPE ($3 M$ BRAND, $1 / 2^{\text {" }}$ PLASTIC ELECTRICAL TAPE WTH UV PROTECTION, OR LABELLD WITH COLOR-CODED INSULATION OR ELLECTICAL TAPE (3M BRAND,
EQUAL). THE IDENTIFCATION METHOD SHALL CONFORM WTH NEC AND OSHA.
6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RRTED VOLTAGE, PHASE
CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACIY RATING AND BRANCH CIRCUIT CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMERES (i.e. PANEL BOARD AND CIIRCUIT 10's).
7. PANEL boards (ID Numbers) Shall be clearly labeled with plastic labels.
8. TIE WRAPS ARE NOT ALLOWED.
9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBBN OR CONDUIT SHALL BE SINGLE COPPER CONDCTOR (\#14 OR LARGER)
WTHH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECFIED. SUPPLEMENTAL EQUIPMENT GROUND WIRRG LOCATED INDOORS SHALL BE SINGLE COPPER CONDCCTOR (\#6 OR LARGER) WTH
$\begin{aligned} & \text { 10. } \\ & \text { TPPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULTION UNLESS OTHERWISE SPECIFIED. }\end{aligned}$ (TH) POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULT-CONDUCTOR, TTPE SOOW CORD (\#14 OR LARGER) UNLESS
10.

OTHERWISE SPECIFIED. 11. PPWER AND CO.
OTHERWISE SPECFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, THPE TC CABLE (\#14 OR LARGER), WITH
THPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFED. 13. AL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STILE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND
BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN $75^{\circ} \mathrm{C}$ ($90^{\circ} \mathrm{C}$ IF AVAIIABLE).
14. RACEWAY AND CABLE TRAY SHALL be Listed or labeled for electrical use in accordance with nema, ul, ansi/IEee and 15. ELLCTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), or RIGID METAL CONDUIT (RMC) SHALL BE USED FOR
EXPOSED INDOOR LOCATIONS.
17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE
GRADE PVC CONDUIT. 18. LIQUDDTIGHT FLEXIBLE METALLLC CONDUT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VBRATION
OCCURS OR FLEXIBLITY IS NEDED. 19. CONDUUT AND TUBBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET
SCREW FITINGS ARE NOT ACCEPTABIE. 20. CAbinets, boxes and wire wars shall be labeled for electrical use in accordance with nema, ul, ansi/ieee and the 21. WIREWAYS SHALL BE METAL WTTH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD (WIREMOLD SPECMATE WIREWAY).
22. SLOTtEd Wining duct shall be pvC and include cover (panduit type e or equal).
23. CONDUTS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSVE
DEVICES (i.e. POWOER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITED. CLOSELY FOLLOW THE UNES

DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WLL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF
THE STRUCTURE, MANTAIN CLOSE PROXIMTY TO THE STRUCTURE AND KEEP CONDUTS IN TIGHT ENEELOPES CHANGS IN DRECTON
 MANERR PARALEL AND PERPENDICULAR MO STRUCTURE WALL AND CEILING LINES. ALL CONDUTT SHALL BE FISHED TO CLLEAR OBSTRUCTONS. ENDS OF CONDUTS SHALL BE TEMPORARLY CAPPED FLUSH TO FINSH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT
FROM ENTERING. CONOUTS SHALL BE RIGILY CLAMPED TO BOXES BY GALVANZED MALEABLE IRON BUSHING ON INSIDE AND GALVANIZE FROM ENTERING. CONDUTS SHALL BE RIIIDLY CLAMF
MALEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
24. EQUPMENT CABNETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET
STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETER) FOR STEEL SHALL MET
EXTERIOR LOCATINS.
 EXCEED UL 514 A AND NEMA OS 1
BETTER) FOR EXTERIOR LOCATIONS.
26. Nonmetallic receptacle, switch and device boxes shall meet or exceed nem os 2 (newest revision) and be rated FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS,
27. THE CONTRACTOR SHALL NOTIF AND OBTAIN NECEESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND

THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE
WITH THE APPLCABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
29. INSTALL LAMICOID LaBEL ON THE METER CENTER TO SHOW "DISH Wireless LLL.C.".
30. ALL Empty/SPare conduits that are installed are to have a metered mule tape pull cord installed.

5701 SOUTH SANTA FE DRVE
LITLETON, $C O 80120$

SBA

b\&t Engineering, inc.

DRAWN BY: \mid CHECKED BY: $/$ PPPROVED By

RMC	BLJ	MOW

PRELIMINARY
DOCUMENTS

| $-8 / 10 / 2$ |
| :--- | :--- |

A\&E PROJECT NUMBER
149562.001.01

BOBOSOO593A
TRURO, MA 02666

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL
BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANGE WTTH THE NEC.
2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POtENTAL RESIITANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR

GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHAL FURNISH AND INSTALL SUPPIEMRNTAL GROUND ELECTRODES AS NEEDED TO
ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUTT INSTALLATION AS TO
PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
4. METAL CONDUIT AND TRAY SHAL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY
BONDING ACROSS THE DISCONTINUITY WTH \#6 COPPER WRE UL APPROVED GROUNOING TPPE CONOUIT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQURED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS
WTHH GREN INSULATON, SIZED IN ACCORDANCE WTH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUTS TO BTS
EQUPMENT
6. EACH CABINET FRAME SHALL BE DRECTL CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUPMENT GROUND WIRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED.

OF THE GROUND BUS ARE PERMITIED.
8. ALL EXTERIOR Ground conductors between equipment/ground bars and the ground ring shall be \#2 solid tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
10. USE OF 90° bends in the protection grounding conductors shall be avoided when 45° bends can be adequately
Supported.
11. exothermic welds shall be used for all grounding connections below grade.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

SAR. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTVE GEL OR PASTE) SHALL be USED on ALL COMPRESSION AND bolted Ground
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18.
CONDUCTOR
19. GROUND CONDUCTORS USED FOR THE FACLITT GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED
THROUGH METALLC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALIC CONOUTS, METAL SUPPORT CLIPS OR
 SLEEVES THROUGH WALLS OR FLLORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUUT TO MEET CODE REQUIREMENTS OR LOCAL
CONOTITONS, NON-METALIC MATERIAL SUCH AS PVC CONOUT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e.,

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE \#2 BARE SOLDD TINNED COPPER IN $3 / 4^{\prime \prime}$ NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WTHIN $3^{\prime \prime}$ TO $6^{\prime \prime}$ OF CAD-WELD TERMINATION POINT.
OF THE CONDUIT MUST BE SEALED WITH SILCONE CAULK. (ADD TRANITIONING GROUND STANDARD DETAIL AS WELL).
21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE
 SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN $2 / 0$ COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BULLDING STEEL COLUMNS, LIGHTNNG PROTECTION SYSTEM, AND BUILDING
(FERROUS OR NONFERROUS METAL PIIING ONLY). DO NOT ATTACH GROUNOING TO FIRE SPRINKLER SYSTEM PIPES,

5701 SOUTH SANTA FE DRVE
LITLTON, CO 80120

b\&t Engineering, inc.

Radio Frequency Emissions Analysis Report

di̊sh

Site ID: BOBOS00593A

SBA - Town Dump Road
5 Town Dump Road
Truro, MA 02666

April 27, 2023

Fox Hill Telecom Project Number: 230389

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 1 . 9 4} \%$

April 27, 2023
Dish Wireless
5701 South Santa Fe Drive
Littleton, CO 80120

Emissions Analysis for Site: BOBOS00593A - SBA - Town Dump Road

Fox Hill Telecom, Inc ("Fox Hill") was directed to analyze the proposed radio installation for Dish Wireless, LLC (Dish) facility located at 5 Town Dump Road, Truro, MA, for the purpose of determining whether the emissions from the Proposed Dish radio and antenna installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 600 MHz band is approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The general population exposure limit for the $1900 \mathrm{MHz}(\mathrm{PCS})$ and 2100 MHz (AWS / AWS-4) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report the percentage of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed upgrades to the Dish Wireless antenna facility located at 5 Town Dump Road, Truro, MA, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 for far field modeling calculations.

In OET-65, plane wave power densities in the Far Field of an antenna are calculated by considering antenna gain and reflective waves that would contribute to exposure.

Since the radiation pattern of an antenna has developed in the Far Field region the power gain in specific directions needs to be considered in exposure predictions to yield an Effective Radiated Power (ERP) in each specific direction from the antenna. Also, since the vertical radiation pattern of the antenna is considered, the exposure calculations would most likely be reduced significantly at ground level, resulting in a more realistic estimate of the actual exposure levels. To determine a worst-case scenario at each point along the calculation radials, each point was calculated using the antenna gain value at each angle of incident and compared against the result using an isotropic radiator at the antenna height with the greater of the two used to yield the more pessimistic far field value for each point along the calculation radial.

Additionally, to model a truly "worst case" prediction of exposure levels at or near a surface, such as at ground-level or on a rooftop, reflection off the surface of antenna radiation power can be assumed, resulting in a potential 1.6 times increase in power density in calculating far field power density values.

With these factors Considered, the worst case Far Field prediction model utilized in this analysis is determined by the following equation:

Equation 9 per FCC OET65 for Far Field Modeling

$$
S=\frac{33.4 E R P}{R^{2}}
$$

S = Power Density (in $\mu \mathrm{w} / \mathrm{cm}^{2}$)
ERP = Effective Radiated Power from antenna (watts)
$\mathrm{R}=$ Distance from the antenna (meters)

Predicted far field power density values for all carriers identified in this report were calculated 6 feet above the ground level and are displayed as a percentage of the applicable FCC standards. All emissions values for other carriers were calculated using the same Far Field model outlined above, using industry standard radio configurations and frequency band selection based upon available licenses in this geographic area for emissions contribution estimates.

For each Dish sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
5 G	n71 (600 MHz)	4	61.5
5 G	n 70 (AWS-4 / 1995-2020)	4	40
5 G	n66 (AWS-4 / 2180-2200)	4	40

Table 1: Channel Data Table

The following Dish antennas listed in Table 2 were used in the modeling for transmission in the 600 MHz (n 71) frequency band and the 2100 MHz (AWS 4) frequency bands at $1995-2020 \mathrm{MHz}(\mathrm{n} 70)$ and $2180-$ 2200 MHz (n66). This is based on feedback from Dish regarding anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	JMA MX08FRO665-21	155
B	1	JMA MX08FRO665-21	155
C	1	JMA MX08FRO665-21	155

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Fox Hill Telecom

RESULTS

Per the calculations completed for the proposed Dish configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	JMA MX08FRO665-21	n71 (600 MHz) / n70 (AWS-4 / 1995-2020) / n66 (AWS-4 / 2180-2200)	$\begin{gathered} 11.45 / 16.15 / \\ 16.65 \end{gathered}$	12	566	17,426.72	3.59
Sector A Composite MPE\%							3.59
Antenna B1	JMA MX08FRO665-21	n71 (600 MHz) / n70 (AWS-4 / 1995-2020) / n66 (AWS-4 / 2180-2200)	$\begin{gathered} 11.45 / 16.15 / \\ 16.65 \\ \hline \end{gathered}$	12	566	17,426.72	3.59
Sector B Composite MPE\%							3.59
Antenna $\mathrm{C} 1$	JMA MX08FRO665-21	n71 (600 MHz) / n70 (AWS-4 / 1995-2020) / n66 (AWS-4 / 2180-2200)	$\begin{gathered} 11.45 / 16.15 / \\ 16.65 \\ \hline \end{gathered}$	12	566	17,426.72	3.59
Sector C Composite MPE\%							3.59

Table 3: Dish Emissions Levels

Fox Hill Telecom

The Following table (Table 4) shows all additional carriers on site and their emissions contribution estimates, along with the newly calculated Dish far field emissions contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas the highest recorded sector value be used for composite site emissions values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results for all three sectors. Table 5 below shows a summary for each Dish Sector as well as the composite emissions value for the site.

Site Composite MPE \%	
Carrier	MPE \%
Dish - Max Per Sector Value	$\mathbf{3 . 5 9 \%}$
AT\&T	2.76%
T-Mobile	1.58%
Verizon Wireless	3.04%
Sprint	0.97%
Site Total MPE \%:	$\mathbf{1 1 . 9 4 \%}$

Table 4: All Carrier MPE Contributions

Dish Sector A Total:	3.59%
Dish Sector B Total:	3.59%
Dish Sector C Total:	3.59%
Site Total:	

Table 5: Site MPE Summary

Fox Hill Telecom

Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated Dish sector(s). For this site, all three sectors have the same configuration yielding the same results for all three sectors.

Table 6: Dish Maximum Sector MPE Power Values

Fox Hill Telecom

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Sector	Power Density Value (\%)
Sector A:	3.59%
Sector B:	3.59%
Sector C:	3.59%
Dish Maximum Total (per sector):	3.59%
Site Total:	11.94%
Site Compliance Status:	COMPLIANT

The anticipated composite emissions value for this site, assuming all carriers present, is $\mathbf{1 1 . 9 4} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon the far field calculations performed for all carriers identified in this report.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5\% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

Principal RF Engineer
Fox Hill Telecom, Inc
Worcester, MA 01609
(978)660-3998

2730 Rowland Road
Suite 100
Raleigh, NC 27615
919-755-1012
www.FDH-inc.com

TIA

Inspection Report

Prepared for: SBA
Date on Site: November 16, 2009
Date Completed: November 19, 2009
FDH Job Numbers: 09-11033T T1
Team Leader: Cameron T. McMahill*
Team Member: Jerome D. Watkins
Team Member: \qquad

SBA
Jill Pontano
5900 Broken Sound Parkway NW
Boca Raton, FL 33487

Ref: TIA-222-G (Annex J) Inspection of Site \#

MA12227-A

Dear Ms. Pontano:
As you requested, FDH has completed an inspection of the above referenced tower. Our inspection was conducted according to TIA-222-G Annex J: Tower Maintenance and Inspection Procedures. Contained herein are our findings and any recommendations.

Summary of Noted Observations and Recommendations

The above referenced tower is in good condition overall with the following discrepancies:
Bent top horizontal (top section) on the AB-face ($\mathrm{L} 2^{\prime \prime} \times 2^{\prime \prime} \times .20^{\prime \prime}$). Reviewed by an engineer, no action required.
A5 Missing stitch bolt ($5 / 8^{\prime \prime}$ bolt) in the 3rd bay, 2nd section on the CA-face. Recommend installing a $5 / 8^{\prime \prime} \times 2.5^{\prime \prime}$ stitch bolt.
A5 Loose bolts throughou the tower. Recommend tightening loose bolts.
Scrapes and scratches with minor surface rust throughout the tower. Recommend removing loose rust and
B1\&2 applying cold galvanization.
B2 All antenna hardware at 137.25^{\prime} has heavy surface rust. Recommend notifying tenant of the issue.
B4
B4
C1
None of the top panel antenna grounds are not attached to the mast pipes. Recommend notifying tenant of the issue.
I 3 Heavy vegetation in the tower compound. Recommend removing vegetation from the compound. Low spot in concrete collecting moisture underneath B-Leg. Recommend installing grout to properly shed water.

We appreciate the opportunity to perform this inspection for SBA

Please feel free to contact me if you have any questions.
Sincerely,

Ganeren T. TVa Mafíls*

Cameron T. McMahill*
Tower Crew Leader

INSPECTION REPORT

Site Name: Truro
Site \#: MA12227-A
TOWER INFORMATION

TIA-222-G ANNEX J REPORT

l

TIA-222-G ANNEX J REPORT

H. Guys			
		\checkmark	1. Strand condition (corrosion, breaks, kinks, etc.):
		\checkmark	2. Turnbuckles or equivalent:
		\checkmark	3. Cable thimbles properly in place (if required):
		\checkmark	4. Preformed wraps - properly applied, and fully wrapped:
		\checkmark	5. Service sleeves (ice clips) properly installed (if required):

6. Wire serving properly applied:
7. No signs of slippage or damaged strands (end fittings):
8. Cable clamps applied properly and bolts tight (safety wires and guy wires if required):
9. Safety wires (Figure-8 and through thimbles):
10. Shackles, bolts, pins and cotter pins secure and in good condition:
11. Poured sockets secure and showing no signs of separation:
12. Tensions

$\begin{array}{llccccc}\text { Guy } & \text { Wire } & \text { Anchor } & \text { Tension at Anchor } & \text { Initial } & \text { \% of Breaking at Anchor } \\ \text { Level } & \text { Size } & \text { Distance } & \operatorname{Leg} A & \text { Leg B } & \text { Leg C } & \text { Tension } \\ \operatorname{Leg} A & \operatorname{Leg} B & \text { Leg C }\end{array}$

N/A

* Initial tension and \% of breaking are adjusted to temperature at time of readings.

\checkmark			
\checkmark			1
	\checkmark		
\checkmark			
		\checkmark	
	\checkmark		
	\checkmark		
\checkmark			7
\checkmark			8
\checkmark			9
	\checkmark		

1. Settlement, movement or earth cracks:
2. Erosion:
3. Site condition:
4. Anchorage nuts and/or nut locking device (tightened):
5. Grout condition:
6. Anchorages and/or rod condition:
7. Concrete cracking, spalling, or splitting:
8. Chipping or broken concrete:
9. Honeycombing:
10. Low spots to collect moisture:
J. Guyed mast Anchors

		\checkmark	1. Settlement, movement or ea						
		\checkmark	2. Backfill heaped over concrete for water shedding:						
		\checkmark	3. Anchor rod condition below earth:						
		\checkmark	4. Corrosion control measures (galvanizing, coating, concrete encasement, cathodic protection systems, etc.): 5. Anchor heads clear of earth:						
		\checkmark							
K. Plumb									
\checkmark 1. Plumb \& Twist									
Observed Mast Data							Calculated Plumb		
Mast Elev. (Feet)	Face Width	$\begin{aligned} & \hline \text { Leg } \\ & \text { Size } \end{aligned}$	$\left\|\begin{array}{l} \text { Fraction of } \\ \text { leg out }(A) \end{array}\right\|$	Fraction of leg out (B)	Fraction of leg out (C)	Twist (Degree)	x (inches)	y (inches)	r (inches)

Draw a plan section of the tower, and show which leg or face the coax is on. Include all wires, coaxes, and cables.
Number each coax in order starting weth leg A and moving clockwise. Label leg A to include azimuth, and satety climb or climbing apparatus.

Antenna elevations are measured from mid-rad on all antennas. Elevation on mounts are measured to the mid-e evation of the point where the mount attaches to the tower.									
Antenna Elevation	Oty \& Type	Manufacturer	Model or Size	Coax *	$\begin{gathered} \text { Coax Qty } 8 \\ \text { Size } \end{gathered}$	Mount Elevation	Mount Qty, Size and Type	Carrier Notes	Mounting Location
$137.25{ }^{\prime}$	(6) Panels	Decibel	950F65T2E-M	1-6	(6) $1-5 / 8^{\prime \prime}$	137.75^{\prime}	(3) Boom Gates ($3^{\prime} \times 14.5^{\prime}$)	Sprint	
175'	(6) Panels	RFS	APXV18-209014	7-15		173.25^{\prime}	(3) Boom Gates ($3.5{ }^{\prime} \times 10.5{ }^{\prime}$)	T-Mobile	
173.25	(6) TMAs	Ericsson	KRY 112 71/2		(3) $3 / 8^{\prime \prime}$		(3) Boom Gates (3.5 $\times 10.5$)		
	(6) Panels	Scala	80010121						
187.25^{\prime}	(6) TMAs		78210250	16-27	(12) $1-5 / 8^{\prime \prime}$	187.25'	(3) Boom Gates (2.5' $\times 12.5{ }^{\prime}$)	Cingular	
	(6) TMAs	Powerwave	LGP17201						

PHOTOS 1

Site Sign

Top of Tower 1

Compound 1

Tower Height

Top of Tower 2

Compound 2

INSPECTION REPORT

Site Name: Truro

Site\#: MA12227-A
PHOTOS 2

PHOTOS 3

PHOTOS 4

B4

13

D1

110

[^0]: ${ }^{1}$ The tower exceeds the Zoning Bylaw height limit of 150 feet (see s. 40.5.B.4), and is therefore a nonconforming structure. As the proposed project entails alteration to a preexisting nonconforming structure, a special permit from the ZBA pursuant to G.L. c. 40A, s. 6 and Bylaw s. 30.7 is required. Hearing is scheduled to open before the ZBA on December 18, 2023.

[^1]: * This application is eligible for relief under the parameters of the Eligible Facilities Request ("EFR") ; Section 6409 of the Spectrum Act (Pub. Law No. 112-96, 126 Stat 156) (codified at 47 U.S.C. § 1455), as well as the FCC’s subsequent Report and Order of October 17, 2014, and Declaratory Ruling of June 9, 2020. Therefore, the proposed upgrades are not subject to discretionary review and are admissible per Federal Law.

[^2]: Your signature on this application authorizes the Members of the Planning Board and town staff to visit and enter upon the subject property.

